
2014 State of Encryption

14% of the Alexa Top Million websites supported HTTPS

– Most didn’t prefer HTTPS

– Higher adoption than average websites

Most sites used known-weak versions of TLS

– Only 1 of 4 popular sites supported latest TLS 1.2

4% of websites supported perfect forward secrecy (PFS)

Only 1 out of 3 emails were encrypted when sent across the Internet

In the beginning, there was nothing.

2

1994

Netscape Navigator

Mosiac rebrands and releases
Netscape Navigator.

1995

SSLv2

February, 1995. Netscape
develops SSLv2. It is released,
but found to be vulnerable to
length extension and MITM
attacks.

1995

Internet Explorer

Microsoft release IEv1
(rebranded, licensed Mosiac) in
August, 1995.. IEv2 is released
three months later.

1995

Apache Web Server

The open-source Apache httpd
reaches 1.0 in December. It
supports virtual hosting, and
largely takes over the public web
server market.

1996

SSLv3

Released by Netscape. Becomes
the foundation for all of modern
HTTPS. In 1999 the IETF adopts
SSL and renames it to TLS.

1998

Microsoft IIS 4.0

First version of Microsoft’s web
server to support virtual hosting.

SSLv2

10

Server Hello: random, server ciphers (…), certificate

Client Finished: EncCWK(randomserver)

Client Hello: random, client-supported ciphers (…)

Server Finished: EncSWK(session_id)

Client Master Key: cipher, mkclear, EncPK(mksecret)

write_key, read_key = KDF(cipher, mkclear || mksecret)

Server Verify: EncSWK(randomclient)

Client selects
cipher

Record Length
(2 bytes)

Padding Length
(1 byte)

Data
MAC Data (MD5
Length)

Actual Data (N) Padding (Padding
Length)

Record Length must be multiple of block size
Padding length is only if a block cipher is in use, pads to block length

MAC = MD5(secret, actual data, padding data, sequence number)
ENC-DATA = ENC(padding length, MAC, actual data, padding)

SSLv2 Problems
● No commitment to the handshake messages

○ MITM can force a downgrade without knowing the keys, including downgrade to export-grade ciphers

● Fixed to non-HMAC MD5 hash function
○ No collision resistance, does have preimage and second-preimage resistance
○ MAC is not an HMAC, it’s just a keyed hash, so it’s vulnerable to length extension
○ HMAC(H, k, m) = H(k || H(k || m))

● No concept of certificate chains, only leaf certificates
○ Could be a positive or a negative

● Only stream cipher is RC4
○ Known issues lowering security level below targets

● Block ciphers are all used in CBC mode
○ Padding oracles

12

13

Server Hello: random, server ciphers (…), certificate

Client Finished: EncCWK(randomserver)

Client Hello: random, client-supported ciphers (…)

Server Finished: EncSWK(session_id)

Client Master Key: cipher, mkclear, EncPK(mksecret)

write_key, read_key = KDF(cipher, mkclear || mksecret)

Server Verify: EncSWK(randomclient)

MITM can
alter this

and
forward
the rest

SSLv2 / TLS Support Among Top 1M Domains
(2016, pre-Drown Attack)

SSLv2 Support in Non-HTTPS Protocols
(2016, pre-Drown Attack)

All Certificates Trusted Certificates

Protocol Port TLS SSLv2 TLS SSLv2

SMTP 25 3,357 K 936 K (28%) 1,083 K 190 K (18%)

POP3 110 4,193 K 404 K (10%) 1,787 K 230 K (13%)

IMAP 143 4,202 K 473 K (11%) 1,781 K 223 K (13%)

HTTPS 443 34,727 K 5,975 K (17%) 17,490 K 1,749 K (10%)

SMTPS 465 3,596 K 291 K (8%) 1,641 K 40 K (2%)

SMTP 587 3,507 K 423 K (12%) 1,657 K 133 K (8%)

IMAPS 993 4,315 K 853 K (20%) 1,909 K 260 K (14%)

POP3S 995 4,322 K 884 K (20%) 1,974 K 304 K (15%)

SSLv2 Good Stuff?
● Uses Key Encapsulation / Data Encapsulation (KEM/DEM)*

○ Use public keys to agree on a random number in secret (encrypt it)
○ Use random number to seed a KDF
○ Use KDF to derive a symmetric key

● Uses record layer with plaintext lengths*
○ Easy to figure out how big your buffer should be when implementing

● Doesn’t try to solve key distribution (leaves it for the certificate authorities and the
browser)*

16
*exceptions exist

TLS

18

Server Hello: server random, chosen cipher

Client Finished: EKms(Hash(m1 | m2 | …))

Client Hello: client random, ciphers (…RSA…)

Certificate: certificate chain (public key PK)

Server Finished: EKms(Hash(m1 | m2 | …))

Client Key Exchange: EncryptPK (premaster secret)

Kms := KDF(premaster secret, client random, server random)

Fixes cipher
selection MITM

Enables
intermediate
certificates

Ciphers define
more hash

types

struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites<2..2^16-2>;
 CompressionMethod compression_methods<1..2^8-1>;
 select (extensions_present) {
 case false:
 struct {};
 case true:
 Extension extensions<0..2^16-1>;
 };
} ClientHello;

[RFC 5246, TLS 1.2, Rescola]

Exercise for the reader: Where are the incompatibility bugs?

Client Hello

21

Zakir Durumeric

Cipher Suites

24

Define the key exchange, signature and hash (if needed), and symmetric encryption used for
a connection.

TLS_RSA_WITH_AES_128_CBC_SHA

TLS_RSA_EXPORT1024_WITH_RC4_56_MD5

TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

TLS certificates contain >512-bit RSA keys

● OK for authentication!
● Literally Illegal for key exchange in the 1990s!

Zakir Durumeric

BUT WAIT…

U.S. Export-Grade Cryptography

Until 1992, the United States severely restricted what cryptographic
technology could be exported outside of the country. Loosened slightly.

Early 1990s: Two versions of Netscape Browser — US version had full
strength crypto (e.g., 1024-bit RSA, 128-bit RC4) and Export version (40-bit
RC2, 512-bit RSA)

1996: Bernstein v. the United States: Ninth Circuit Court of Appeals ruled that
software source code was speech protected by the First Amendment and that
the government's regulations preventing its publication were unconstitutional

Decision later withdrawn, but U.S. changed policy to allow, no precedent set

Export Key Length Restrictions
Regulations applied to communication with non-US entities

Public-key Cryptography: Max 512-bit public keys
● Finite Field Diffie-Hellman (key exchange)
● RSA (key exchange, encryption)

Symmetric Cryptography: Max 40-bit keys
● Block ciphers (DES)
● Stream ciphers (RC4)

Signatures and Message Authentication Codes were unregulated

8

All types of export
cryptography have led to
attacks against modern
cryptography.

TLS Attacks

TLS 1.0 to 1.2
TLS 1.1 (2006)
• Implicit Initialization Vector (IV) is replaced with an explicit IV to protect against Cipher block

chaining (CBC) attacks

• Handling of padded errors is changed to use the bad_record_mac alert rather than the

decryption_failed alert

 
TLS 1.2 (2008)
• The MD5/SHA-1 combination in the pseudorandom function (PRF) was replaced with

cipher-suite-specified PRFs.

• The MD5/SHA-1 combination in the digitally-signed element was replaced with a single has

• Addition of support for authenticated encryption with additional data modes

• Extensions!

Multiplexing on Names

20

If you have more than one service per host, you need to multiplexed by some identifier
(usually name).

HTTP virtual hosting is powered by the Host header. TLS exposes this via the SNI extension
(cleartext).

Any secure protocol has to answer:

● How does it multiplex?
● Is the identifier private or public?

2014 POODLE Attack: padding oracle attack against SSLv3 results in browsers removing support

2015 FREAK Attack: protocol vulnerability in TLS allows attackers to trick clients into
using “export-grade” cryptography if server supports Export Grade RSA

2015 Logjam Attack: protocol vulnerability found that enables attackers to downgrade some
connections to export grade Diffie-Hellman. Browsers remove traditional D-H support.

2016 RC4 deprecation: after a string of attacks against RC4, major browsers remove support

2013 Lucky 13: padding oracle attack against CBC cipher suites

2016 DROWN attack: cross-protocol attack on export-grade AES

2017 First public SHA-1 collision

2016 Sweet32: Birthday attacks on 64-bit block ciphers like 3DES

2012 BEAST attack against TLS 1.0 CBC ciphers. Many folks recommend using RC4 in response

2012 CRIME attack shows that TLS compression is broken

Timeline of TLS Attacks

2014 POODLE Attack: padding oracle attack against SSLv3 results in browsers removing support

2015 FREAK Attack: protocol vulnerability in TLS allows attackers to trick clients into
using “export-grade” cryptography if server supports Export Grade RSA

2015 Logjam Attack: protocol vulnerability found that enables attackers to downgrade some
connections to export grade Diffie-Hellman. Browsers remove traditional D-H support.

2016 RC4 deprecation: after a string of attacks against RC4, major browsers remove support

2013 Lucky 13: padding oracle attack against CBC cipher suites

2016 DROWN attack: cross-protocol attack on export-grade AES

2017 First public SHA-1 collision

2016 Sweet32: Birthday attacks on 64-bit block ciphers like 3DES

2012 BEAST attack against TLS 1.0 CBC ciphers. Many folks recommend using RC4 in response

2012 CRIME attack shows that TLS compression is broken

Timeline of TLS Attacks

2014 POODLE Attack: padding oracle attack against SSLv3 results in browsers removing support

2015 FREAK Attack: protocol vulnerability in TLS allows attackers to trick clients into
using “export-grade” cryptography if server supports Export Grade RSA

2015 Logjam Attack: protocol vulnerability found that enables attackers to downgrade some
connections to export grade Diffie-Hellman. Browsers remove traditional D-H support.

2016 RC4 deprecation: after a string of attacks against RC4, major browsers remove support

2013 Lucky 13: padding oracle attack against CBC cipher suites

2016 DROWN attack: cross-protocol attack on export-grade AES

2017 First public SHA-1 collision

2016 Sweet32: Birthday attacks on 64-bit block ciphers like 3DES

2012 BEAST attack against TLS 1.0 CBC ciphers. Many folks recommend using RC4 in response

2012 CRIME attack shows that TLS compression is broken

Timeline of TLS Attacks

Full Timeline: https://www.feistyduck.com/ssl-tls-and-pki-history/

2014 POODLE Attack: padding oracle attack against SSLv3 results in browsers removing support

2015 FREAK Attack: protocol vulnerability in TLS allows attackers to trick clients into
using “export-grade” cryptography if server supports Export Grade RSA

2015 Logjam Attack: protocol vulnerability found that enables attackers to downgrade some
connections to export grade Diffie-Hellman. Browsers remove traditional D-H support.

2016 RC4 deprecation: after a string of attacks against RC4, major browsers remove support

2013 Lucky 13: padding oracle attack against CBC cipher suites

2016 DROWN attack: cross-protocol attack on export-grade AES

2017 First public SHA-1 collision

2016 Sweet32: Birthday attacks on 64-bit block ciphers like 3DES

2012 BEAST attack against TLS 1.0 CBC ciphers. Many folks recommend using RC4 in response

2012 CRIME attack shows that TLS compression is broken

Timeline of TLS Attacks

Imperfect Forward Secrecy:
How Diffie-Hellman Fails in Practice

David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew Green, J .
Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel Thomé, Luke Valenta,

Benjamin VanderSloot, Eric Wustrow, Santiago Zanella-Beguelin, and Paul Zimmermann

Diffie-Hellman Key Exchange

First published key exchange algorithm

Public Parameters
- p (a large prime)
- g (generator for group p)

ga mod p

gb mod p

gab mod p == gba mod p

Diffie-Hellman on the Internet

Diffie-Hellman is pervasive on the Internet today

Primary Key Exchange
- SSH
- IPSEC VPNs

Ephemeral Key Exchange
- HTTPS
- SMTP, IMAP, POP3
- all other protocols that use TLS

“Sites that use perfect forward secrecy can provide better
security to users in cases where the encrypted data is

being monitored and recorded by a third party.”

“Ideally the DH group would match or exceed the RSA
key size but 1024-bit DHE is arguably better than straight

2048-bit RSA so you can get away with that if you want to.”

“With Perfect Forward Secrecy, anyone possessing
the private key and a wiretap of Internet activity can

decrypt nothing.”

2015 Diffie-Hellman Support

Protocol Support

HTTPS (Top Million Websites) 68%

HTTPS (IPv4, Browser Trusted) 24%

SMTP + STARTTLS 41%

IMAPS 75%

POP3S 75%

SSH 100%

IPSec VPNs 100%

Breaking Diffie-Hellman

Computing discrete log is best known attack against DH

In other words, Given gx ≡ y mod p, compute x

p

polynomial
selection

sieving linear
algebra

log db

precomputation

y, g descent

x

individual log

Number Field Sieve

Breaking Diffie-Hellman

Computing discrete log is best known attack against DH

In other words, Given gx ≡ y mod p, compute x

p

polynomial
selection

sieving linear
algebra

log db

precomputation

y, g descent

x

individual log

Number Field Sieve

Pre-computation is only dependent on p!

Breaking Diffie-Hellman

p

polynomial
selection

sieving linear
algebra

log db

precomputation

y, g descent

x

individual log

Number Field Sieve

Sieving Linear Algebra Descent

DH-512 2.5 core years 7.7 core years 10 core min.

Lost in Translation

This was known within the cryptographic community

However, not within the systems community

66% of IPSec VPNs use a single 1024-bit prime

Lost in Translation

This was known within the cryptographic community

However, not within the systems community

66% of IPSec VPNs use a single 1024-bit prime

Are the groups used in practice still
secure given this “new” information?

512-bit Keys and the  
Logjam Attack on TLS

Diffie-Hellman in TLS

The majority of HTTPS websites use 1024-bit DH keys

However, nearly 8.5% of Top 1M still support Export DHE

Source Popularity

Apache 82%

mod_ssl 10%

Other (463 distinct primes) 8%

Normal TLS Handshake

client hello: client random, ciphers (… DHE …)

server hello: server random, chosen cipher

Normal TLS Handshake

client hello: client random, ciphers (… DHE …)

server hello: server random, chosen cipher

certificate, p, g, ga, SignCertKey(p, g, ga)

gb

Kms: KDF(gab, client random, server random)

Normal TLS Handshake

client hello: client random, ciphers (… DHE …)

server hello: server random, chosen cipher

certificate, p, g, ga, SignCertKey(p, g, ga)

gb

Kms: KDF(gab, client random, server random)

client finished: SignKms(Hash(m1 | m2 | …))

server finished: SignKms(Hash(m1 | m2 | …))

Logjam Attack
cr, ciphers (… DHE …) cr, ciphers (EXPORT_DHE)

Logjam Attack
cr, ciphers (… DHE …) cr, ciphers (EXPORT_DHE)

sr, cipher: DHE sr, cipher: EXPORT_DHE

Logjam Attack
cr, ciphers (… DHE …) cr, ciphers (EXPORT_DHE)

sr, cipher: DHE sr, cipher: EXPORT_DHE

certificate, p512, g, ga, SignCertKey(p512, g, ga)

gb

Kms: KDF(gab, client random, server random)

Logjam Attack
cr, ciphers (… DHE …) cr, ciphers (EXPORT_DHE)

sr, cipher: DHE sr, cipher: EXPORT_DHE

certificate, p512, g, ga, SignCertKey(p512, g, ga)

gb

Kms: KDF(gab, client random, server random)

SignKms(Hash(m1 | m2 | …))

SignKms(Hash(m1 | m2 | …))

SignKms(Hash(m1 | m2 | …))

SignKms(Hash(m1 | m2 | …))

Computing 512-bit Discrete Logs

We modified CADO-NFS to compute two common primes

1 week pre-computation, individual log ~70 seconds

Logjam Mitigation

Browsers
- have raised minimum size to 768-bits
- plan to move to 1024-bit in the future
- plan to drop all support for DHE

Server Operators
- Disable export ciphers!!
- Use a 2048-bit or larger DHE key
- If stuck using 1024-bit, generate a unique prime
- Moving to ECDHE

768- and 1024-bit Keys

Breaking One 1024-bit DH Key

Estimation process is convoluted due to the number of
parameters that can be tuned.

Crude estimations based on asymptotic complexity:

Custom Hardware

If you went down this route, you would build ASICs

Prior work from Geiselmann and Steinwandt (2007)
estimates ~80x speed up from custom hardware.

≈$100Ms of HW precomputes one 1024-bit prime/year

Custom Hardware

If you went down this route, you would build ASICs

Prior work from Geiselmann and Steinwandt (2007)
estimates ~80x speed up from custom hardware.

≈$100Ms of HW precomputes one 1024-bit prime/year

For context… annual budgets for the U.S.
- Consolidated Cryptographic Program: 10.5B
- Cryptanalyic IT Services: 247M
- Cryptanalytic and exploitation services: 360M

TLS 1.3

TLS 1.3 What’s New?
Removed:
 - Problematic features from the past like compression, renegotiation

 - Known broken ciphers like MD-5, SHA-1, RC4, 3DES, CBC mode,  
 traditional finite-field Diffie-Hellman, export ciphers, user defined groups

 - Non-PFS (perfect forward secret) handshakes, non-AEAD ciphers

 

Added:
 + Simplified handshake with one fewer round trip

 + Protection against downgrade attacks (e.g., signature over entire exchange)

 + Support for newer elliptic curves (e.g., x25519 and 448)

 + Zero RTT Session Resumption (performance win)

TLS 1.3 Design

TLS 1.3 was finalized in 2018! Process took ~5 years.

One of first major protocols to involve academic community during design.
Uncovered multiple attacks, including a downgrade, cross-protocol, and
key-sharing attack

Empirical tests helped design a handshake that minimizes interference with
broken middle boxes

TLS 1.3 Client Hello
Problem: Needs to look like a TLS 1.2 Client Hello for compatibility reasons, but work in new
ways with 1.3 servers.

Solution: TLS 1.3 only cipher suites, move version negotiation and key share to an extension,
deprecate old fields. The protocol can diverge from old versions after the Client Hello.

struct {

 ProtocolVersion legacy_version = 0x0303; /* TLS v1.2 */

 Random random;

 opaque legacy_session_id<0..32>;

 CipherSuite cipher_suites<2..2^16-2>;

 opaque legacy_compression_methods<1..2^8-1>;

 Extension extensions<8..2^16-1>;

} ClientHello;

52

TLS 1.3 0-RTT Mode
By agreeing on a PSK to use with future connections, it is possible for a client to being future
connections before waiting for a server response [RFC 8446, Rescola, 2018]

These messages are replayable. This could lead to security flaws. The spec says not to
handle requests that modify data until after the replay window is up (after the server finishes
the handshake).

Functionality primarily used by “Big Tech”

This is the sketchiest part of all of TLS 1.3. Someone should measure this. Maybe ICSI has?

54

A Look Back on SSLv2: The Good Parts
TLS 1.3 fully drops the RSA KEM/DEM design inherited from SSLv2.
Not a knock on all KEM/DEM, but we have better ways of doing key agreement (DH).

Switching to AEADs makes it even easier to have authenticated plaintext data associated
with a encrypted payload
Plaintext header data continues to make protocol implementation easier

For better or for worse, we still use X.509 certificates as the primary Web PKI.
Stare not into the abyss, lest you become recognized as an abyss domain expert, and they
keep expecting you to stare into the damn thing.

61

TLS 1.3 Adoption

Today: TLS 1.3: 70%

TLS 1.2: 13%

QUIC: 17%

Noise Protocol Framework

56

Noise is a set of guidelines for describing protocols for authenticated secure channels using
Diffie-Hellman as the only asymmetric primitive, combined with an AEAD.

There are no signatures!

The two parties are an initiator and a responder.

