Internet Censorship

cs249i: The Modern Internet
whoami
Internet Censorship practices are on the rise
Internet Censorship
How do censors restrict access?

1. Internet shutdowns

Internet Censorship

How do censors restrict access?

1. Internet shutdowns
2. Throttling

Russia used throttling to slow down Twitter in March 2021, 2022
Internet Censorship
How do censors restrict access?

1. Internet shutdowns
2. Throttling
3. Content Takedowns

Google received ~300K government takedown requests since 2011
Internet Censorship

How do censors restrict access?

1. Internet shutdowns
2. Throttling
3. Content Takedowns

Google received ~300K government takedown requests since 2022

[Link](https://transparencyreport.google.com/government-removals/government-requests?hl=en_GB)
Internet Censorship
How do censors restrict access?

1. Internet shutdowns
2. Throttling
3. Content Takedowns
4. Website blocking

https://dataprot.net/articles/what-is-internet-censorship/
Censorship during an Internet connection

Modes of website blocking
Censorship during an Internet connection
Modes of website blocking

Client

CS249i Server
Censorship during an Internet connection
DNS manipulation

Censorship during an Internet connection

DNS manipulation

Client → DNS query: cs249i.stanford.edu → DNS Resolver → CS249i Server
Censorship during an Internet connection
DNS manipulation

Client

DNS Resolver

CS249i Server
Censorship during an Internet connection
DNS manipulation

Client ➔ DNS Resolver
127.0.0.1 ➔ CS249i Server
Censorship during an Internet connection
IP blocking

Client

CS249i Server
185.199.111.153
Censorship during an Internet connection
IP blocking
Censorship during an Internet connection

IP blocking

Client

TCP Syn

CS249i Server
185.199.111.153
Censorship during an Internet connection
IP blocking

Client

TCP Syn

CS249i Server
185.199.111.153
Censorship during an Internet connection
IP blocking

Client

Block, RST, etc.

CS249i Server
185.199.111.153
Censorship during an Internet connection

App-layer blocking
Censorship during an Internet connection

App-layer blocking

HTTP(s)

TCP Handshake

Client

CS249i Server
185.199.111.153
Censorship during an Internet connection
App-layer blocking
Censorship during an Internet connection

App-layer blocking
Measuring Internet Censorship
Why measure censorship?

Censorship harms + how data can help

Network Censorship is on the rise 😞

• Information controls harm citizens
• Spreading beyond just large countries
• Frequently opaque in topic + technique

Measurements help us to:

• Support transparency + accountability
• Improve technical defenses
• Inform users + public policy

“…When users become more aware of censorship, they often take actions that enhance Internet freedom and protect fellow users.” – Freedom House
Vision for Censorship Measurement Research

Building a “weather map” of censorship

- Censorship
- Raw data
- Percentage of networks blocking requests
- Top blocked domains by country
Measuring Internet censorship is hard!
Three challenges for conducting sound measurements
Measuring Internet censorship is hard!
Three challenges for conducting sound measurements

Censorship methods are varied

- DNS Manipulation
- TCP/IP blocking
- Application layer blocking
Measuring Internet censorship is hard!
Three challenges for conducting sound measurements

<table>
<thead>
<tr>
<th>Censorship methods are varied</th>
<th>Censorship varies around the world</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS Manipulation</td>
<td>Geographical variance</td>
</tr>
<tr>
<td>TCP/IP blocking</td>
<td>Network variance</td>
</tr>
<tr>
<td>Application layer blocking</td>
<td></td>
</tr>
</tbody>
</table>
Measuring Internet censorship is hard!
Three challenges for conducting sound measurements

<table>
<thead>
<tr>
<th>Censorship methods are varied</th>
<th>Censorship varies around the world</th>
<th>Censorship varies over time</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS Manipulation</td>
<td>Geographical variance</td>
<td>Cat + mouse game</td>
</tr>
<tr>
<td>TCP/IP blocking</td>
<td>Network variance</td>
<td></td>
</tr>
<tr>
<td>Application layer blocking</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
First studies into censorship
Few countries, limited snapshots

Triplet Censors: Demystifying Great Firewall’s DNS Censorship Behavior

Anonymous
Arian Akhavan Niaki
University of Massachusetts Amherst

Nguyen Phong Hoang
Stony Brook University

Phillipa Gill
University of Massachusetts Amherst

Amir Houmansadr
University of Massachusetts Amherst

Internet Censorship in Iran: A First Look

Simurgh Aryan
Aryan Censorship Project
aryauncensorship.project@gmail.com

Homa Aryan
Aryan Censorship Project
aryauncensorship.project@gmail.com

J. Alex Halderman
University of Michigan
jhalderm@umich.edu
OONI | Probe

Measure internet censorship
Contribute to the world's largest open dataset on internet censorship

Download OONI Probe for macOS

Other Platforms »

User Guide »
How OONI Works
Volunteer-based direct measurements of censorship

Volunteer client in-country

OONI

Censor

Server of Interest

Control Relay
How OONI Works

Volunteer-based direct measurements of censorship

Volunteer client in-country

OONI

Censor

Server of Interest

Control Relay
How OONI Works

Volunteer-based direct measurements of censorship
How OONI Works
Volunteer-based direct measurements of censorship

https://explorer.ooni.org
Limitations of volunteer measurements
5 key problems

Scale
Coverage
Continuity

Cost
Ethics
A word on ethics...

Ethical Concerns for Censorship Measurement

Ben Jones, Roya Ensafi, Nick Feamster, Vern Paxson, Nick Weaver
Princeton University, UC Berkeley, International Computer Science Institute

Under what conditions is it safe to use volunteers devices?
 What populations of users are affected?
 Do people incur no more than minimal risk?
 Do the benefits to the population balance the risks?
Remote Censorship Measurements
A new approach to examining censorship

Client → Censorship? → Server of Interest

Measurement machine
Spooky Scans
Using TCP/IP side-channels to detect if clients + servers can communicate

Client

Server of Interest

Measurement machine

Detecting Intentional Packet Drops on the Internet via TCP/IP Side Channels
Roya Ensafi, Knockel, Alexander, and Crandall (PAM '14)
TCP / IP Background

IP-IDs

Client

SYN [IP-ID: X]

SYN+ACK [IP-ID: Y]

ACK [IP-ID: X+1]

Server
TCP / IP Background

RSTs
TCP / IP Background

Retries

Client

SYN

SYN+ACK

SYN+ACK

SYN+ACK

Server
Spooky Scan Requirements

Clients, Server, Spoofing Packets

Client

Must maintain a **global** value for IP_ID

Server of Interest

Open port + retransmitting SYN+ACKs

Measurement machine

Must be able to spoof packets
Spooky Scans
No blocking

Client → 1. SYN-ACK → Measurement machine → Server of Interest
Spooky Scans

No blocking

Client IP IDs: 7000
Spooky Scans
No blocking

Client

1. SYN-ACK
2. RST [IP_ID: 7000]

Measurement machine

Client IP_IDs:
7000

Server of Interest

3. SYN, [src: client_IP]
Spooky Scans

No blocking

1. SYN-ACK
2. RST [IP_ID: 7000]
3. SYN, [src: client_IP]
4. SYN-ACK
5. RST [IP_ID: 7001]

Client IP_IDS: 7000

Client

Measurement machine

Server of Interest
Spooky Scans

No blocking

Client IP IDs:
7000
7002

Server of Interest

Measurement machine

1. SYN-ACK
2. RST [IP_ID: 7000]
3. SYN, [src: client_IP]
4. SYN-ACK
5. RST [IP_ID: 7001]
6. SYN-ACK
7. RST [IP_ID: 7002]
Spooky Scans

No blocking

1. SYN-ACK
2. RST [IP_ID: 7000]
3. SYN, [src: client_IP]
4. SYN-ACK
5. RST [IP_ID: 7001]
6. SYN-ACK
7. RST [IP_ID: 7002]
8. Probe [IP_ID: 7003]

Client IP IDs:
- 7000
- 7002
- 7003
Spooky Scans
Server-to-client is blocked

Client

Censor

Server of Interest

Measurement machine
Spooky Scans

Server-to-client is blocked

1. SYN-ACK
2. RST [IP_ID: 7000]

Client IP_IDS: 7000

Measurement machine

Censor

Client

Server of Interest
Spooky Scans
Server-to-client is blocked

Client

1. SYN-ACK
2. RST [IP_ID: 7000]
6. SYN-ACK
7. RST [IP_ID: 7001]
8. Probe [IP_ID: 7002]

Measurement machine

4. SYN-ACK
3. SYN, [src: client_IP]

Server of Interest

Client IP IDs:
- 7000
- 7001
- 7002

Censor
Spooky Scans
Client-to-server is blocked

Client

Censor

Server of Interest

Measurement machine
Spooky Scans
Client-to-server is blocked

Client

1. SYN-ACK

2. RST [IP_ID: 7000]

Censor

3. SYN, [src: client_IP]

Measurement machine

Client IP_IDS:
7000

4. SYN-ACK

5. RST [IP_ID: 7001]

Server of Interest
Spooky Scans
Client-to-server is blocked

Client IP IDs:
- 7000
- 7002

Censor:
- 1. SYN-ACK
- 2. RST [IP_ID: 7000]
- 3. SYN, [src: client_IP]
- 4. SYN-ACK
- 5. RST [IP_ID: 7001]
- 6. SYN-ACK
- 7. RST [IP_ID: 7002]
Spooky Scans

Client-to-server is blocked

Client IP IDs: 7000 7002
Spooky Scans

Client-to-server is blocked

Client IP IDs:
- 7000
- 7002
- 7004

1. SYN-ACK
2. RST [IP_ID: 7000]
3. SYN, [src: client_IP]
6. SYN-ACK
7. RST [IP_ID: 7004]
10. Probe [IP_ID: 7001]
Spooky Scan Outcomes

Three distinct cases

<table>
<thead>
<tr>
<th>No Blocking</th>
<th>Server-to-client blocking</th>
<th>Client-to-server blocking</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP_ID_1: 7000</td>
<td>IP_ID_1: 7000</td>
<td>IP_ID_1: 7000</td>
</tr>
<tr>
<td>IP_ID_2: 7002</td>
<td>IP_ID_2: 7001</td>
<td>IP_ID_2: 7002</td>
</tr>
</tbody>
</table>
Spooky scans can uncover IP blocking!

Augur: Internet-Wide Detection of Connectivity Disruptions

Paul Pearce†*, Roya Ensafi§*, Frank Li†, Nick Feamster§, Vern Paxson†
†University of California, Berkeley §Princeton University
{pearce, frankli, vern}@berkeley.edu {rensafi, feamster}@cs.princeton.edu

https://www.censoredplanet.org/projects/augur
Measuring Keyword Blocking
Using the Echo Protocol for Fun + Profit

Equation

This RFC specifies a standard for the ARPA Internet community. Hosts on the ARPA Internet that choose to implement an Echo Protocol are expected to adopt and implement this standard.

A very useful debugging and measurement tool is an echo service. An echo service simply sends back to the originating source any data it receives.

TCP Based Echo Service

One echo service is defined as a connection based application on TCP. A server listens for TCP connections on TCP port 7. Once a connection is established any data received is sent back. This continues until the calling user terminates the connection.

UDP Based Echo Service

Another echo service is defined as a datagram based application on UDP. A server listens for UDP datagrams on UDP port 7. When a datagram is received, the data from it is sent back in an answering datagram.
Measuring Keyword Blocking
Using the Echo Protocol for Fun + Profit

Client

Server of Interest

[Images of client and server with American flags]
Measuring Keyword Blocking
Using the Echo Protocol for Fun + Profit

TCP Handshake

GET / HTTP/1.1
Host: censored.com

GET / HTTP/1.1
Host: censored.com

Client

Server of Interest
Measuring Keyword Blocking
Using the Echo Protocol for Fun + Profit
Measuring Keyword Blocking
Using the Echo Protocol for Fun + Profit

TCP Handshake
Host: censored.com

Client

Censor

Server of Interest

Something’s up...
Quack, Hyperquack
Duck-themed censorship research

Quack: Scalable Remote Measurement of Application-Layer Censorship

Benjamin VanderSloot, Allison McDonald, Will Scott, J. Alex Halderman, and Roya Ensafi
University of Michigan
{benvds, amcdon, willscott, jhalderm, ensafi}@umich.edu

Measuring the Deployment of Network Censorship Filters at Global Scale

Ram Sundara Raman*, Adrian Stoll*, Jakub Dalek†, Reethika Ramesh*, Will Scott‡, Roya Ensaﬁ*
*University of Michigan, {ramaks, adrs, reethika, ensaﬁ}@umich.edu
†The Citizen Lab, University of Toronto, jakub.dalek@utoronto.ca
‡Independent, willscott@gmail.com
Censored Planet Observatory
Remote measurement platform

An Internet-wide, Longitudinal Censorship Observatory

Censored Planet is a censorship measurement platform that collects data using multiple remote measurement techniques in more than 200 countries.
Censored Planet Observatory

Collects data using remote measurement techniques on **6 Internet protocols** (TCP/IP, DNS, HTTP, HTTPS, Echo, Discard)

Continuous baseline of reachability data for **2000 websites each week**

More than **95,000 vantage points** in **221 countries and territories**
45 billion
Measurements over 36 Months

221 countries
42%-360% increase compared to other platforms

8 ASes (median)/country
Median increase of 4-7 ASes per country
Censored Planet’s Impact

Rapid response studies

Study: Russia’s Web-Censoring Tool Sets Pace for Imitators
By The Associated Press

WASHINGTON — Russia is succeeding in imposing a highly effective internet censorship regime across thousands of disparate, privately owned providers in an effort also aimed at making government snooping pervasive, according to a study released Wednesday.

Real-time monitor tracks the growing use of network filters for censorship
February 21, 2020

The team says their framework can scalably and semi-automatically monitor the use of filtering technologies for censorship at global scale.
Kazakhstan’s National TLS Interception

- **July 17, 2019**: Government started intercepting large fraction of HTTPS traffic within its borders.

Publication - Investigating Large Scale HTTPS Interception in Kazakhstan; R. Sundara Raman, L. Evdokimov, E. Wurstrow, J. A. Halderman, and R. Ensafi; ACM Internet Measurement Conference (IMC), 2020
Kazakhstan’s National TLS Interception

- Censored Planet detected and studied the interception
- Pilot test
- Interception occurring at large state-owned network and targeting social media websites
Browsers Take a Stand Against Interception!

The use of ‘Qaznet Trust Network’ root CA certificate in Chrome, Firefox, and Safari is now prevented.
Measurement systems are still being improved upon!

CERTainty: Detecting DNS Manipulation at Scale using TLS Certificates

Elisa Tsai* Deepak Kumar† Ram Sundara Raman* Gavin Li* Yael Eiger* Roya Ensafi*
*Censored Plant, University of Michigan †Stanford University

Many Roads Lead To Rome: How Packet Headers Influence DNS Censorship Measurement

Abhishek Bhaskar Paul Pearce

Georgia Institute of Technology
{abhaskar, pearce}@gatech.edu
Circumventing Internet Censorship
Circumventing Censors
Proxying requests through “safe” servers

Client

TCP Handshake

Proxy Server

CS249i Server
185.199.111.153
Circumventing Censors
Proxying requests through “safe” servers is easy to detect

Client

TCP Handshake

Proxy Server

CS249i Server
185.199.111.153
Circumventing Censors
Imitating non-censored protocols
Circumventing Censors
Imitating non-censored protocols has problems

The Parrot is Dead:
Observing Unobservable Network Communications

Amir Houmansadr Chad Brubaker Vitaly Shmatikov
The University of Texas at Austin
Circumventing Censors
Refraction Networking

1. User requests a blocked site
2. Client software requests a reachable site
3. Censor allows the request to pass through
4. ISP partner *refracts* the request to the blocked site

https://refraction.network/
Circumventing Censors
Refraction Networking

Benjamin VanderSloot*, Sergey Frolov, Jack Wampler, Sze Chuen Tan, Irv Simpson, Michalis Kallisitsis, J. Alex Halderman, Nikita Borisov, and Eric Wustrow

Running Refraction Networking for Real

An ISP-Scale Deployment of TapDance

Sergey Frolov1, Fred Douglas3, Will Scott5, Allison McDonald5, Benjamin VanderSloot5, Rod Hynes6, Adam Kruger6, Michalis Kallitsis4, David G. Robinson7, Steve Schultze2, Nikita Borisov3, J. Alex Halderman5, and Eric Wustrow1

1University of Colorado Boulder 2Georgetown University Law Center 3University of Illinois Urbana-Champaign
4Merit Network 5University of Michigan 6Psiphon 7Upturn

https://refraction.network/
Recap

Censorship techniques, measurements, circumvention

- Internet censorship is on the rise, we’re seeing even small countries with deep capabilities

- Many techniques: DNS manipulation, IP blocking, App-layer blocking

- Censorship can be measured through volunteers or through carefully designed remote-measurements
 - Orgs like OONI, CensoredPlanet are measuring censorship longitudinally!

- Circumvention techniques are moving beyond simple proxies towards ISP-mediated refraction, but it’s a cat + mouse game
Recap

Censorship techniques, measurements, circumvention

• Internet censorship is on the rise, we’re seeing even small countries with deep capabilities

• Many techniques: DNS manipulation, IP blocking, App-layer blocking

• Censorship can be measured through volunteers or through carefully designed remote-measurements
 • Orgs like OONI, CensoredPlanet are measuring censorship longitudinally!

• Circumvention techniques are moving beyond simple proxies towards ISP-mediated refraction, but it’s a cat + mouse game

Questions?

Deepak Kumar

kumarde@ucsd.edu

@_kumarde