
In the beginning, there was nothing.
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1994

Netscape Navigator

Mosiac rebrands and releases 
Netscape Navigator.

1995

SSLv2

February, 1995. Netscape 
develops SSLv2. It is released, 
but found to be vulnerable to 
length extension and MITM 
attacks.

1995

Internet Explorer

Microsoft release IEv1 
(rebranded, licensed Mosiac) in 
August, 1995.. IEv2 is released 
three months later.

1995

Apache Web Server

The open-source Apache httpd 
reaches 1.0  in December. It 
supports virtual hosting, and 
largely takes over the public web 
server market.

1996

SSLv3

Released by Netscape. Becomes 
the foundation for all of modern 
HTTPS. In 1999 the IETF adopts 
SSL and renames it to TLS.

1998

Microsoft IIS 4.0

First version of Microsoft’s web 
server to support virtual hosting.



Secure Communication, Take 1
Confidentiality: Only the sender and receiver can read the message.

Integrity: The message has not been modified.

Authenticity: The message is from who you think it is.
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What is it that you do here?
1. History of SSL and TLS

What series of events led us to TLS 1.3? What motivated its design?

2. What have we learned secure protocol design?
What have we learned in the last 30 years?

3. Where is secure networking going?
TLS 1.3 was standardized. What comes next?

5



BUT WAIT…



Export Cryptography
In the 1990s, “export” of cryptography by US persons was regulated.*

International Traffic in Arms Regulations (ITAR), then Export Administration Regulations 
(EAR).

Ban on exporting code with a printed material exception.

Overturned during Daniel J. Bernstein vs United States of America in 1999 by the Clinton 
Administration.

7
*Technically it still is regulated, but most open-source software is exempt



Export Key Length Restrictions
Regulations applied to communication with non-US entities

Public-key Cryptography: Max 512-bit public keys
● Finite Field Diffie-Hellman (key exchange)
● RSA (key exchange, encryption)

Symmetric Cryptography: Max 40-bit keys
● Block ciphers (DES)
● Stream ciphers (RC4)

Signatures and Message Authentication Codes were unregulated

8



SSLv2
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Server Hello: random, server ciphers (…), certificate

Client Finished: EncCWK(randomserver) 

Client Hello: random, client-supported ciphers (…)

Server Finished: EncSWK(session_id)

Client Master Key: cipher, mkclear, EncPK(mksecret)

write_key, read_key = KDF(cipher, mkclear || mksecret)

Server Verify: EncSWK(randomclient)

Client selects 
cipher



Record Length
(2 bytes)

Padding Length
(1 byte)

Data
MAC Data (MD5 
Length)

Actual Data (N) Padding (Padding 
Length)

Record Length must be multiple of block size
Padding length is only if a block cipher is in use, pads to block length

MAC = MD5(secret, actual data, padding data, sequence number)
ENC-DATA = ENC(padding length, MAC, actual data, padding)



SSLv2 Problems
● No commitment to the handshake messages

○ MITM can force a downgrade without knowing the keys, including downgrade to export-grade ciphers

● Fixed to non-HMAC MD5 hash function
○ No collision resistance, does have preimage and second-preimage resistance
○ MAC is not an HMAC, it’s just a keyed hash, so it’s vulnerable to length extension
○ HMAC(H, k, m) = H(k || H(k || m))

● No concept of certificate chains, only leaf certificates
○ Could be a positive or a negative

● Only stream cipher is RC4
○ Known issues lowering security level below targets

● Block ciphers are all used in CBC mode
○ Padding oracles

12
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Server Hello: random, server ciphers (…), certificate

Client Finished: EncCWK(randomserver) 

Client Hello: random, client-supported ciphers (…)

Server Finished: EncSWK(session_id)

Client Master Key: cipher, mkclear, EncPK(mksecret)

write_key, read_key = KDF(cipher, mkclear || mksecret)

Server Verify: EncSWK(randomclient)

MITM can 
alter this 

and 
forward 
the rest



SSLv2 / TLS Support Among Top 1M Domains
(2016, pre-Drown Attack)



SSLv2 Support in Non-HTTPS Protocols
(2016, pre-Drown Attack)

All Certificates Trusted Certificates

Protocol Port TLS SSLv2 TLS SSLv2

SMTP 25 3,357 K 936 K (28%) 1,083 K 190 K (18%)

POP3 110 4,193 K 404 K (10%) 1,787 K 230 K (13%)

IMAP 143 4,202 K 473 K (11%) 1,781 K 223 K (13%)

HTTPS 443 34,727 K 5,975 K (17%) 17,490 K 1,749 K (10%)

SMTPS 465 3,596 K 291 K (8%) 1,641 K 40 K (2%)

SMTP 587 3,507 K 423 K (12%) 1,657 K 133 K (8%)

IMAPS 993 4,315 K 853 K (20%) 1,909 K 260 K (14%)

POP3S 995 4,322 K 884 K (20%) 1,974 K 304 K (15%)



SSLv2 Good Stuff?
● Uses Key Encapsulation / Data Encapsulation (KEM/DEM)*

○ Use public keys to agree on a random number in secret (encrypt it)
○ Use random number to seed a KDF
○ Use KDF to derive a symmetric key

● Uses record layer with plaintext lengths*
○ Easy to figure out how big your buffer should be when implementing

● Doesn’t try to solve key distribution (leaves it for the certificate authorities and the 
browser)*

16
*exceptions exist



TLS
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Server Hello: server random, chosen cipher

Client Finished: EKms(Hash(m1 | m2 | … ))

Client Hello: client random, ciphers (…RSA…)

Certificate: certificate chain (public key PK)

Server Finished: EKms(Hash(m1 | m2 | … ))

Client Key Exchange: EncryptPK (premaster secret)

Kms := KDF(premaster secret, client random, server random)

Fixes cipher 
selection MITM

Enables 
intermediate 
certificates

Ciphers define 
more hash 

types



A protocol is extensible if you can add a feature to it without having to update every 
implementation at the same time. 
● Extensions and Version Number provide extensibility for TLS

A protocol has cryptographic agility if implementations can negotiate the underlying 
cryptography in use.
● Cipher suites provide agility in TLS

Extensibility and Agility
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Multiplexing on Names

20

If you have more than one service per host, you need to multiplexed by some identifier 
(usually name).

HTTP virtual hosting is powered by the Host header. TLS exposes this via the SNI extension 
(cleartext).

Any secure protocol has to answer:

● How does it multiplex?
● Is the identifier private or public?



struct {
    ProtocolVersion client_version;
    Random random;
    SessionID session_id;
    CipherSuite cipher_suites<2..2^16-2>;
    CompressionMethod compression_methods<1..2^8-1>;
    select (extensions_present) {
        case false:
            struct {};
        case true:
            Extension extensions<0..2^16-1>;
    };
} ClientHello;

[RFC 5246, TLS 1.2, Rescola]

Exercise for the reader: Where are the incompatibility bugs?

Client Hello

21



“HAVE ONE JOINT AND 
KEEP IT WELL OILED.”
ADAM LANGLEY, GOOGLE
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Cipher Suites

24

Define the key exchange, signature and hash (if needed), and symmetric encryption used for 
a connection.

TLS_RSA_WITH_AES_128_CBC_SHA

TLS_RSA_EXPORT1024_WITH_RC4_56_MD5

TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

TLS certificates contain >512-bit RSA keys

● OK for authentication!
● Literally Illegal for key exchange in the 1990s!
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Server Hello: server random, chosen cipher

Client Finished: EKms(Hash(m1 | m2 | … ))

Client Hello: client random, ciphers (…RSA…)

Certificate: certificate chain (public key PK)

Client Key Exchange: EncryptPK512 (premaster secret)

Server Finished: EKms(Hash(m1 | m2 | … ))

Kms := KDF(premaster secret, client random, server random)

Server Key Exchange: SignPK(PK512)

Bug: Accepted 
on non-export 

ciphers
512-bit RSA



26

Client Hello: ciphers (…RSA…)

Certificate: certificate chain (public key PK)

Server Key Exchange: SignPK(PK512)
Attacker can 

decrypt

Factored by 
attacker

Client Hello: ciphers (…RSA_EXPORT…)

Server Hello: cipher: RSA Server Hello: cipher: RSA_EXPORT

Client Key Exchange: EncryptPK512 (premaster secret)

Kms := KDF(premaster secret, client random, server random)

EKms(Hash(m1 | m2 | … )) [RSA]

EKms(Hash(m1 | m2 | … )) [RSA]

EKms(Hash(m1 | m2 | … )) [EXPORT]

EKms(Hash(m1 | m2 | … )) [EXPORT]



FREAK Attack
Discovered by researchers at INRIA attempting to formally model TLS implementation state 
machines.

FREAK attack allows an attacker who can factor 512-bit RSA keys to man-in-the-middle TLS 
connections to servers that support export-grade RSA.

Computers are faster now than in 1998, 512-bit keys can be factored in 1-2 hours for ~$100 
[Valenta 2015]
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FREAK Impact
FREAK is an implementation bug stemming from complexity around compliance 
mechanisms for export regulations
● OpenSSL (Chrome)
● Microsoft SChannel (Internet Explorer)
● Apple SecureTransport (Safari)

Modern clients are vulnerable, but FREAK only has impact if servers support export-grade 
RSA ciphers.

Measure support for export-grade RSA!

28



The FREAK attack is possible when a vulnerable browser connects to a susceptible web 
server—a server that accepts “export-grade” encryption.

Vulnerable at Disclosure
(March 3, 2015)

Vulnerable One Week Later
(March 10, 2015)

HTTPS Servers at Alexa Top 1M 
Domains 9.6% 8.5%

HTTPS servers with browser-trusted 
certificates 36.7% 6.5%

All HTTPS servers 26.3% 11.8%

FREAK Measurements



RSA Key Exchange
FREAK attack is not the only attack on RSA.

● Textbook RSA is broken
○ No semantic security (deterministic, 1:1 mapping from plaintext to ciphertext)
○ Can’t encrypt anything larger or shorter than n = pq
○ Requires padding to implement securely
○ PKCS#1.5 padding is difficult to securely parse (timing attacks, padding oracle issues)
○ OAEP (encryption) and PSS (signatures) are easier to parse, may still have timing issues

● Bleichenbacher Padding Oracle
○ Extended to use SSLv2 servers to attack TLSv1.2 connections in the DROWN attack [Aviram 2016]
○ Attacks PKCS #1.5 padding

● Bleichenbacher e=3 attack
○ A small plaintext might not wrap N, calculate the cube root to decrypt
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Forward Secrecy

31

Forward secrecy is the property that compromising key material of a session does not allow 
you to decrypt past sessions.

Threat model is someone who is recording traffic or who has consistent access to your 
network traffic.

Forward secrecy means they would have to break each connection individually, or actively 
man-in-the-middle a connection, even if long-term key material is compromised.



TLS achieves forward-secrecy via ephemeral 
Diffie-Hellman.

Generating a new Diffie-Hellman key pair each 
connection to derive a master secret decouples the 
long-term key from the session key, providing forward 
secrecy.

The long-term key is only used for authentication. If an 
attacker compromises the long-term key, they cannot 
decrypt past sessions (forward secrecy).

Ephemeral Diffie-Hellman

32



Finite-Field Diffie-Hellman (FFDH)
Let (p, g, +, *) define a field generated by g modulo p, where p is prime. Alice generates x = ga, 
Bob generates y = gb.

Alice sends x, and calculates ya. Bob sends y, and calculates xb. Then both sides calculate 
the secret ya= gba = gab = xb mod p, assuming that log mod p is hard (discrete log).

Even though we have a field (two operations), we only need one operation. If we could find a 
group instead of a field, with similar properties, then we would have less algebraic structure 
and could get equivalent security at lower bit secrets (less computation).

Answer: elliptic curves (later)

See October 26, 2021 episode of “Security, Cryptography, Whatever”
33
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Server Hello: server random, chosen cipher

Client Finished: EKms(Hash(m1 | m2 | … ))

Client Hello: client random, ciphers (…DHE…)

Certificate: certificate chain (public key PK)

Server Finished: EKms(Hash(m1 | m2 | … ))

Client Key Exchange: gb

Kms := KDF(gab, client random, server random)

Server Key Exchange: p, g, ga, SignPK(p, g, ga)

512-bit group for 
export ciphers



Elliptic Curve Diffie-Hellman (ECDH)
Select (C, g, +) where C is an elliptic curve, and g generates a group of points on the curve.

Instead of defining addition, multiplication and exponentiation, define addition and 
multiplication by a scalar as repeated addition (3x = x + x + x)

Alice and Bob generate secret scalars a and b. Alice publishes x = ag. Bob publishes y = bg.

Diffie-Hellman is now: (a)y = (ab)g = (b)x = (ba)g

The addition operation is a fancy formula that depends on the curve C.

Curves are defined in advance (e.g. X25519). Selecting curves with efficient and 
misuse-resistant formulas is an active area of research
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ECDH in TLS 1.2
● Negotiated via cipher suite
● Supported curves are indicated in an extension
● Content of ClientKeyExchange and ServerKeyExchange is switched from FFDH to ECDH

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

36



Safely Using FFDH
Use elliptic curve Diffie-Hellman instead! (ECDH / ECDHE)

If that’s not possible, see the last paragraph of [Valenta 2017]:

● Prefer safe primes, those where (p-1)/2 is also prime
● Use primes with documented provenance (not a trapdoor prime) [Fried 2016]

○ Don’t let endpoints pick their own prime

● Validate key exchange value is between 1 and p-1, exclusive
● Use ephemeral key exchange values for every connection (don’t reuse them)
● Use exponents of at least 224 bits (a and b)

See October 26th, 2021 episode of “Security, Cryptography, Whatever” podcast

37

https://securitycryptographywhatever.buzzsprout.com/1822302/9439685-pakes-oprfs-algebra-feat-george-tankersley


Discrete Log
The security of Diffie-Hellman relies on the computational hardness of computing discrete 
logs, e.g. given g, p, and gx mod p, calculate x.

The number-field sieve is the fastest-known algorithm for computing discrete logs.

38Depends only on p, 1 week for 512-bit p Fast
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Client Hello: ciphers (…DHE…)

Certificate: certificate chain (public key PK)

Server Key Exchange: p512, g, ga, SignPK(p512, g, ga)

Client Hello: ciphers (…DHE_EXPORT…)

Server Hello: cipher: DHE Server Hello: cipher: DHE_EXPORT

Client Key Exchange: gb

Kms := KDF(gab, client random, server random)

EKms(Hash(m1 | m2 | … )) [DHE]

EKms(Hash(m1 | m2 | … )) [DHE]

EKms(Hash(m1 | m2 | … )) [EXPORT]

EKms(Hash(m1 | m2 | … )) [EXPORT]



Export Cipher Support Among Servers with Trusted Certificates



8.5% of the Alexa Top 1M supported DHE_EXPORT
3.4% of trusted IPv4 supported DHE_EXPORT

Prime Popularity Among Top 1M

Apache mod_ssl prime 82%

Nginx prime 10%

Other (463 primes) 8%

Top 1M Support
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Cipher Suite Agility Doesn’t Save You From Backdoors
FREAK is an implementation vulnerability surrounding export-grade cryptography, 

Logjam is a protocol vulnerability where the difficulty to exploit relies on empirical properties 
of the Internet.

In both cases, (mis?)behavior of hosts on the Internet contributed to the vulnerability 
(sharing primes, reusing 512-bit keys, consistent cross-implementation bugs)

DROWN also exists and uses export ciphers in SSLv2 to attack TLS 1.2 [Aviram 2016]
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DROWN Vulnerability
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Fully disable SSLv2
● Don’t only disable export ciphers
● If only ciphers are disabled, make sure they’re actually disabled (CVE-2015-3197)

Have single-use keys
● Usually discussed in the context of signatures vs. encryption
● Prudent to use different keys across different protocol versions
● Domain separation helps

Authenticate the client before sending secret-derived data
● DROWN is possible because of the early ServerVerify message
● Design protocols to check the client has knowledge of the secret first

Mitigations and Lessons from DROWN
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All types of export 
cryptography have led to 
attacks against modern 
cryptography.



TLS 1.3



Authenticated Encryption with Associated Data (AEAD)
AEAD ciphers exist for TLS 1.2 and earlier, however all TLS 1.3 ciphers MUST be AEADs. An 
AEAD has the following API:

Seal(key, nonce, associated_data, plaintext) -> (ciphertext), where 
len(ciphertext) = len(plaintext) + TAG_LEN, and nonce has fixed 
NONCE_LEN.

Open(key, nonce, associate_data, ciphertext) -> (plaintext), where 
len(plaintext) = len(ciphertext) - TAG_LEN, and nonce has fixed 
NONCE_LEN. If authentication fails, than an error is returned.

Example AEADs: AES-GCM, ChaCha-Poly1305, Kravatte, Xoodyak, 
47



AEAD Usage
Why are AEADs nice for secure transports?

● Use a plaintext packet header as associated data. This header can contain length, 
message type, etc.

● An AEAD functions like a stream cipher. No padding is needed. The output length 
always matches the input length, plus the tag length (MAC).

● Nonces can be sent in plaintext, and randomly generated. Don’t reuse them

Issues with AEADs

● Nonce management is dependent on the AEAD (not all need them). Some have 
catastrophic failures if a nonce is reused.
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TLS 1.3
Goals:
1. Reduce handshake latency
2. Encrypt more of the handshake
3. Improve resilience to cross-protocol and downgrade attacks
4. Remove legacy features

TLS 1.3 was standardized in August, 2018. It began development in August, 2013.
Informed by the last 10 years of cryptography research. Can it avoid the pitfalls of the past?

New “version”, but with a very new shape. [RFC 8446, Rescola, 2018]
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Server Hello: random, chosen cipher, versions, key share es

Client Finished: HMAC(Kf, Transcript-Hash)

Client Hello: random, AEADs and sig/hash, key share ec, versions

Certificate: certificate chain (public key PK)

Server Finished: HMAC(Kf, Transcript-Hash)

Kw, Kr, Kf := KDF(DH(esec), Transcript-Hash)

Certificate Verify: SignPK(Transcript-Hash)

No more Client Key Exchange
Switches to 

HMAC

Always 
ephemeral key 
exchange with 

forward 
secrecy and no 

RSA

Prevent 
downgrades 

from breaking 
session key



TLS 1.3 Key Exchange
Named Groups
● Unify parameter selection for (EC)DHE
● Select from preset list of curves/groups, each following best practices
● 1-RTT Mode: Client guesses supported group and provides key share during Hello. 

Server responds with its contribution, or a HelloRetryRequest and a list of groups.

Limiting RSA
● No RSA key exchange
● Replace PKCS#1.5 with PSS to avoid Bleichenbacher failures

Explicit Verification
● Server signs handshake transcript with certificate key
● Prevents downgrade attacks leveraging weak session keys 51



TLS 1.3 Client Hello
Problem: Needs to look like a TLS 1.2 Client Hello for compatibility reasons, but work in new 
ways with 1.3 servers.

Solution: TLS 1.3 only cipher suites, move version negotiation and key share to an extension, 
deprecate old fields. The protocol can diverge from old versions after the Client Hello.

struct {

  ProtocolVersion legacy_version = 0x0303;    /* TLS v1.2 */

  Random random;

  opaque legacy_session_id<0..32>;

  CipherSuite cipher_suites<2..2^16-2>;

  opaque legacy_compression_methods<1..2^8-1>;

  Extension extensions<8..2^16-1>;

} ClientHello;

52



TLS 1.3 Server Hello
Problem: Needs to look like a TLS 1.2 Server Hello for compatibility reasons with 
middleboxes, but work in new ways with 1.3 clients. 

Solution: TLS 1.3 only cipher suites, move version negotiation and key share to an extension, 
deprecate old fields. Sentinel random indicates HelloRetryRequest when necessary. Fix 
the last eight bytes of the randomness when negotiating TLS <=1.2 to prevent downgrades.

struct {

  ProtocolVersion legacy_version = 0x0303;    /* TLS v1.2 */

  Random random;

  opaque legacy_session_id_echo<0..32>;

  CipherSuite cipher_suite;

  uint8 legacy_compression_method = 0;

  Extension extensions<6..2^16-1>;

} ServerHello;
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TLS 1.3 0-RTT Mode
By agreeing on a PSK to use with future connections, it is possible for a client to being future 
connections before waiting for a server response [RFC 8446, Rescola, 2018]

These messages are replayable. This could lead to security flaws. The spec says not to 
handle requests that modify data until after the replay window is up (after the server finishes 
the handshake).

Functionality primarily used by “Big Tech”

This is the sketchiest part of all of TLS 1.3. Someone should measure this. Maybe ICSI has?
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NOT TLS



Noise Protocol Framework

56

Noise is a set of guidelines for describing protocols for authenticated secure channels using 
Diffie-Hellman as the only asymmetric primitive, combined with an AEAD.

There are no signatures!

The two parties are an initiator and a responder.

http://www.noiseprotocol.org/
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es

ec

k := KDF(k, DH(ecss))

Ek(ss)

Actually an 
AEAD with 

nonce and tagk := KDF(DH(eces))

Ek(sc)

k := KDF(k, DH(sces))

Uses DH secret 
and public key 

on each 
respective side



Noise Notation
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XX handshake pattern (mutually authenticated by a long-term key)

-> e

<- e, ee, s, es

-> s, se

NN handshake pattern (anonymous)

-> e

<- e, ee



Why Triple DH?
-> s
<- s, ss

No forward secrecy in static-static.

-> e
<- s, es
-> s, se

Avoid Key Compromise Impersonation (KCI) attacks against a compromised long-term key, 
where the attacker impersonates another party to the victim with the compromised key. Any 
side that contributes a static key must also contribute an ephemeral.

59https://romailler.ch/2021/08/18/crypto-why-ephemeral-keys/

https://romailler.ch/2021/08/18/crypto-why-ephemeral-keys/


WHAT DID WE LEARN?



A Look Back on SSLv2: The Good Parts
TLS 1.3 fully drops the RSA KEM/DEM design inherited from SSLv2.
Not a knock on all KEM/DEM, but we have better ways of doing key agreement (DH).

Switching to AEADs makes it even easier to have authenticated plaintext data associated 
with a encrypted payload
Plaintext header data continues to make protocol implementation easier

For better or for worse, we still use X.509 certificates as the primary Web PKI.
Stare not into the abyss, lest you become recognized as an abyss domain expert, and they 
keep expecting you to stare into the damn thing.
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How to Design and Build A Secure Transport
Who is using the protocol and why are they using it?

1. Can you just use TLS?
2. If not, can you use a specific Noise instantiation?
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More Questions
If the answer is “no” to both of those:

● TCP vs UDP? Is there IP roaming? Connection-resumption? Long-lived connections?
● Do you control all the endpoints? Can you do full-fleet upgrades? Can you run two 

versions simultaneously? Can you run two servers simultaneously? Can you have more 
than one endpoint?

● What hardware constraints do you have? Can you use OpenSSL? Libcrypto? Libsodium? 
Are there binary size constraints? What are the memory constraints?

● What cryptography can be hardware accelerated? What has to be done in software?
● What is the key distribution method? Do you control it? Can it be a separate protocol?
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Picking Primitives
● Figure out if you need signatures.

○ Usually depends on if certificates are involved.
○ Ed25519 or NIST P-256

● Use ephemeral Diffie-Hellman for forward secrecy.
○ X25519

● If you don’t need signatures, use Triple-DH for authentication
○ Less primitives means less code and less mistakes.

● Use an AEAD for all symmetric crypto.
○ Authenticating a plaintext header as part of the decryption step is 🚀
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Recommendations
Opt for protocol designs that lend themselves to secure implementations. The designer 
should also be an implementer. Redesign things that make the code gross.
This is somewhat tautological.

Keep one joint, and keep it well-oiled. Don’t use cryptographic agility to build backdoors.
Did I really spend all this time talking about export ciphers just to plug the papers you wrote in 
grad school?

Public-key cryptography is for key exchange and signatures, not encryption. Stop using 
RSA. Don’t talk about “public-key encryption”.

Use an AEAD. Don’t use static Diffie-Hellman unless you also use ephermeal Diffie-Hellman.
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Other Tips
Linearize Your State Transitions. Figure out what path you’re taking as soon as possible, and 
predefine the only possible orders. Don’t branch.
Example: s2n state machine

Length-Prefixed Vectors. Ideally, everything is fixed length and there is “no parsing”. If not, 
use length-prefixed vectors, and chunk things off one at a time.
Example: cyryptobyte in Golang

Dogfood. Use your own library. Does it work? How much does it suck to use? Can your server 
talk to your own client? Can it talk to other implementations? Are the bytes on the wire 
correct?
Example: Tests for the TLS implementation in Golang
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Oops, more tips.
Nonce Management. Figure out what the failure cases of nonce collision is. Do you need 8, 
12, or 16-byte nonces? Is your nonce random or a counter?

Replay Attacks. Are you getting help from TCP? What about at the start or resumption of a 
session? TCP + randomness in handshake + full commitment + no resumption means no 
replays.

Max Counter. How much data can you send in a single session before you risk birthday 
attacks?

Formal Verification. Have you formally verified your protocol? If not, could you? If not, why 
not?
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NEW DIRECTIONS IN SECURE TRANSPORTS



Wireguard
Wireguard is a VPN protocol with only two cryptography-related settings
● Which X25519 key to use?
● Which X25519 keys to trust?

There is no cryptographic agility. There is no key distribution. There is no certificate chaining.

Keys can be trivially regenerated in association with an external key management protocol.

Cryptokey routing: 
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Cryptokey Routing: IP + Key as Routing Table and ACL
Server

[Interface]

PrivateKey = yAnz5TF+lXXJte14tji3zlMNq+hd2rYUIgJBgB3fBmk=

ListenPort = 51820

[Peer]

PublicKey = xTIBA5rboUvnH4htodjb6e697QjLERt1NAB4mZqp8Dg=

AllowedIPs = 10.192.122.3/32, 10.192.124.1/24

[Peer]

PublicKey = TrMvSoP4jYQlY6RIzBgbssQqY3vxI2Pi+y71lOWWXX0=

AllowedIPs = 10.192.122.4/32, 192.168.0.0/16

Client

[Interface]

PrivateKey = gI6EdUSYvn8ugXOt8QQD6Yc+JyiZxIhp3GInSWRfWGE=

ListenPort = 21841

[Peer]

PublicKey = HIgo9xNzJMWLKASShiTqIybxZ0U3wGLiUeJ1PKf8ykw=

Endpoint = 192.95.5.69:51820

AllowedIPs = 0.0.0.0/0
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Tailscale
Tailscale is key distribution via SAML and OIDC and automatic route management for 
Wireguard, used to create an overlay network where each IP address is authenticated via an 
IdP.

An overlay network is a multi-party VPN that supports direct endpoint-to-endpoint 
communication.
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Cloudflare One
Connecting SAML and OIDC to a VPN sounds a lot like “zero-trust”. What happens when you 
start overlay networks with access control, identity management, policy enforcement, and 
device management?
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Innovation is still happening.
There are things happening in academia.
Formal Verification, NIST Lightweight Crypto, TLS, Key Transparency

There is money to be made in industry.
Cloudflare One, Tailscale, Nebula, Xaptum, Subspace, Bastion Zero, Hashicorp Boundary
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