The Domain Name System Part One

 $\bullet \bullet \bullet$

CS 249i : The Modern Internet Winter 2024 | 24th January 2024

> Gautam Akiwate Stanford University

Understand the rationale, and operational workings of the Domain Name System (DNS).

Problem

- Communication on the Internet via IP
- Hard to remember IP addresses
- Easier to remember names.
 - Slightly harder to type them in correctly!
- Map Names to IP addresses
 - \circ stanford \rightarrow 185.199.108.153

Centralized Solution: Historical Solution

- hosts.txt file that has mappings for all hosts
 - \circ organization : host \rightarrow IP address
 - /etc/hosts
- Stanford Research Institute (SRI) kept main copy
 - Single place to update records
 - Download hosts.txt file periodically

Centralized Solution: Historical Solution

- hosts.txt file that has mappings for all hosts
 - \circ organization : host \rightarrow IP address
 - /etc/hosts
- Stanford Research Institute (SRI) kept main copy
 - Single place to update records
 - Download hosts.txt file periodically
- Problems
 - Fragile
 - Hard to scale
 - Hard to keep in sync

hosts.txt

organization : host \rightarrow IP address

hosts.txt

organization \rightarrow IP address of organization.txt

organization.txt

host \rightarrow IP address

DNS Root

root authoritative nameservers

DNS Infrastructure

Root Authoritative NS

TLD Authoritative NS

Domain Authoritative NS

Additional Info Section

Message

NOERROR

SERVEATL

NXDOMAIN

NOTIMP

REFUSED

Rcode

0

2

3

4

5

Query Name (QNAME) -- Domain to resolve!

Query Name (QNAME) -- Domain to resolve! Query Class (QCLASS)

CHAOS -- Used for debugging

IN -- Internet

Query Name (QNAME) -- Domain to resolve! Query Class (QCLASS) CHAOS -- Used for debugging IN -- Internet Query Type (QTYPE) NS -- Authoritative nameserver for domain A -- IPv4 Address

> AAAA -- IPv6 Address MX -- Mail Exchange Records

TTL -- How long to cache answer

Caching

- Cache DNS Responses
 - Reduces load
 - Improves latency
 - Reuse of previous queries
- Negative Caching
- How long to cache?
 - Time To Live (TTL)

"The caching discipline of the DNS works well, and given the unexpectedly bad performance of the Internet, was essential to the success of the system." **Live Demo**

Discussion

Failures

Reliability

Integrity

Confidentiality

Discussion: Failures

• Why can a DNS query fail?

Discussion: Failures

- Misconfiguration?
 - Typos
 - Misconfigured authoritative nameserver
- Hardware/Network Failures
 - Unreachable Nameserver
- Large Traffic Volume
 - DoS Attacks

- Why use UDP? Why not TCP?
- Reliability through replication
 - Two authoritative nameserver per domain
 - What about root servers? TLD authoritative NS?
- Reliability across the entire life cycle?

Root Servers

• Only 13 root servers?

Root Servers

• Only 13 root servers?

Anycast Primer

Client #1

Anycast Primer

Anycast Primer

- Why use UDP? Why not TCP?
- Reliability through replication
 - Two authoritative nameserver per domain
 - What about root servers? TLD authoritative NS?
- Reliability across the entire life cycle?

• Anycast adds another layer of reliability across the query life cycle!

Discussion: Integrity

- Minimal security considerations in original DNS design.
- How to guarantee integrity of response?
 - Guarantee response has not been modified.
- But in order to do that, how to extend DNS?

Extension Mechanisms for DNS (EDNS)

Add additional section to the end of a DNS packet.

EDNS sections skipped in old resolvers, and nameservers.

Used to implement DNSSEC, and ECS.

DNS Security Extension (DNSSEC)

- Add signature to DNS Records
 - Validate signature to ensure integrity of response
- Low adoption rate (though increasing)
- Not all resolvers support DNSSEC.
 - Public DNS Resolvers support DNSSEC

ID
QR Opcode AA TC RD RA Z AD CD Rcode
Query Count
Answer Count
NS Count
Addtl Record Count

EDNS Client Subnet (ECS)

CDNs with large number of PoPs.

How to ensure response is mapped to closest PoP for client?

ECS allows recursive resolvers to supply the prefix of client IP

 $137.110.222.10 \rightarrow 137.110.222.0/24$

Discussion: Confidentiality

QName Minimization

Encryption: DoH/DoT

DNS over HTTPs

DNS over TLS

Encrypted queries to recursive resolver?

Confidentiality? From whom?

What about ECS?

