Internet Governance CS249i: The Modern Internet

Distributed, but... still needs coordination

Little central coordination between ISPs — everyone makes their own (commercially-driven) decisions — with informal coordination

Other aspects need centralized organization:

- DNS and name registration (e.g., .com and .org)
- IP + MAC allocation
- WHOIS records for IP addresses
- Port Numbers
- Protocol Identifiers

Obsoleted by: 433 Network Working Group Request for Comments : 349

NIC : 10428

Categories : Socket Numbers References : RFC's 322, 204

Proposed Standard Socket Numbers

I propose that there be a czar (me ?) who hands out official socket numbers for use by standard protocols. This czar should also keep track of and publish a list of those socket numbers where host specific services can be obtained. I further suggest that the initial allocation be as follows: Sockets Assignment 0-63 Network wide standard functions 64-127 Host specific functions 128-239 Reserved for future use 240-255 Any experimental function and within the network wide standard functions the following particular assignment be made: Socket Assignment Telnet File Transfer Remote Job Entry Echo Discard

[<u>Search</u>] [<u>txt</u>|<u>html</u>|<u>pdf</u>|<u>bibtex</u>] [<u>Tracker</u>] [<u>Email</u>] [<u>Diff1</u>] [<u>Diff2</u>] [<u>Nits</u>]

Unknown

Jon Postel Computer Science UCLA-NMC 30 May 72

IANA (Internet Assigned Numbers Authority)

Non-profit organization that oversees globally unique identifiers:

- IP Address Allocation
- ASN Allocation
- Protocol IDs
- Time Zone Database

In addition, IANA is responsible for administering data in root nameservers

- Root Zone (including DNSSEC)
- Special Zones (.int, .arpa)

IANA History

and Joyce Reynolds. UCLA \rightarrow USC Information Sciences Institute (ISI)

maintain IANA's functions

coordinating Internet namespace and addressing

- IANA emerged organically was originally run by two individuals, Jon Postel
- IANA becomes official in ~1988 when DARPA provides funding to USC-ISI to
 - In 1998, USC transfers control to ICANN, a new non-profit responsible for

Jon Postel

RFC788

Robustness principle

Article Talk

From Wikipedia, the free encyclopedia

In computing, the robustness principle is a design guideline for software that states: "be conservative in what you do, be liberal in what you accept from others". It is often reworded as: "be conservative in what you send, be liberal in what you

SIMPLE MAIL TRANSFER PROTOCOL

Jonathan B. Postel

ICANN Today

U.S. relinquished control in March 2016 – now completely independent

- Prior to 2016, DoC provided oversight, verifying changes to DNS
- Also pursuant to an agreement with IETF over their functions

ICANN is managed by a 16-member board of directors:

- 8 members selected by a nominating committee on which all the constituencies of ICANN are represented;
- 6 representatives of its Supporting Organizations,
- 1 at-large seat filled by an at-large organization;
- (1) President / CEO, appointed by the board

ICANN originally operated under contract from U.S. Department of Commerce.

ICANN vs. IANA vs. PTI

From 1998 to 2016, ICANN directly managed IANA (under contract from U.S. Government)

In 2016, ICANN established *Public Technical Identifiers (PTI)*, an independent organization that manages the technical operations of IANA

PTI is an affiliate of ICANN and is contacted by ICANN to perform those operations

Top Level Domains (TLDs)

Generic TLDs: originally 7 gTLDs (predate ICANN) from the 1980s: .com, .org, .net, .int, .edu, .gov, and .mil

the other four have limited purposes.

Infrastructure TLDs: .arpa used for reverse DNS pointer lookups

ccTLDs: In 1994, IANA started to assign two letter country-code domains

be used by entities engaged within specific industry; (Added in 2000s)

In 2010, \sim 22 gTLDs total + \sim 250 ccTLDs

- Domain names may be registered in {.com, .net, and .org} without restriction;
- Generic Restricted: (.biz, .name, .pro), can used only for specified purposes
- Sponsored: .aero, .asia, .cat, .coop, .jobs, mobi, .tel, .travel, and .xxx can only

.gov TLD

 \equiv README.md

.gov data

The .gov top-level domain is operated so that the online services of US-based government organizations are easy to identify on the internet. In support of that aim, we publish .gov domain data publicly.

This repository contains the official, full list of registered domains in the .gov zone. The US Government's executive, legislative, and judicial branches are represented, as are US-based state, territory, tribal, city, and county governments.

Two files are updated daily (when there is activity):

- current-full.csv a CSV of all domains, including federal domains
- current-federal.csv a CSV of only federal domains

https://github.com/cisagov/dotgov-data

g federal domains ains

New gTLD Program

In 2011, ICANN introduced a new TLD program

For a fee of \$185,000, companies can create and control new gTLDs that reflect both brand (e.g., .acme) and product niche (e.g., .widgets).

Today, there are ~1,241 registered TLDs

Full of wonderful additions like...

.pizza, .beer, .george, .sucks, .google, .xyz, .wow, .unicorn, .blue

Who runs Root Servers?

IANA only controls the data in the authoritative root DNS servers.

It does not run the root servers themselves

HOSTNAME	IF
a.root-servers.net	1
b.root-servers.net	1
c.root-servers.net	1
d.root-servers.net	1
e.root-servers.net	1
f.root-servers.net	1
g.root-servers.net	1
h.root-servers.net	1
i.root-servers.net	1
j.root-servers.net	1
k.root-servers.net	1
l.root-servers.net	1
m.root-servers.net	2

IP ADDRESSES	OPERATOR
198.41.0.4, 2001:503:ba3e::2:30	Verisign, Inc.
199.9.14.201, 2001:500:200::b	University of Southern California, Information Sciences Institute
192.33.4.12, 2001:500:2::c	Cogent Communications
199.7.91.13, 2001:500:2d::d	University of Maryland
192.203.230.10, 2001:500:a8::e	NASA (Ames Research Center)
192.5.5.241, 2001:500:2f::f	Internet Systems Consortium, Inc.
192.112.36.4, 2001:500:12::d0d	US Department of Defense (NIC)
198.97.190.53, 2001:500:1::53	US Army (Research Lab)
192.36.148.17, 2001:7fe::53	Netnod
192.58.128.30, 2001:503:c27::2:30	Verisign, Inc.
193.0.14.129, 2001:7fd::1	RIPE NCC
199.7.83.42, 2001:500:9f::42	ICANN
202.12.27.33, 2001:dc3::35	WIDE Project

Verisign and .com TLD

- IANA/ICANN doesn't run the TLDs either they approve and delegate control by issuing NS records that point to other providers
- Historically, SRI and then Network Solutions controlled .com TLD
- In 2000, Verisign acquired Network Solutions and became the registry for .com, .net, and .org
- Verisign continues to be the provider under ICANN regulation/contract
 - ICANN sets terms like the maximum that Verisign can change registrars
 - Was \$7.85 since 2012, \$8.39 since 2021. Will likely rise to \$10.26 by the end of 2026

.Org Dispute

- Widely understood that the reason was to financially support ISOC
- In 2018, PIR's (subsidiary) revenue from .org was over \$92 MM
- Technically, PIR contracts the work out to Afilias, who runs a bunch of TLDs

ISOC tried to sell PIR to PE firm Ethos Capital in 2018 (1.13B), but transfer required ICANN's approval

Significant external concern — including from California AG's Office

ICANN ultimately blocked the transfer

In 2003, Verisign transferred control of .org TLD to the Internet Society (ISOC)

Zone Files

Top-Level Domain (TLD) zone files are files maintained by Verisign that map active second-level domain names with the Internet Protocol (IP) addresses of the name server for the domain name.

ICANN

CZDS Centralized Zone Data Service

Welcome to CZDS!

The Centralized Zone Data Service (CZDS) is an online portal where any interested party can request access to the **Zone Files** provided by participating **generic Top-Level Domains (gTLDs)**.

Please check back often as new gTLDs will be added once they are delegated. If you are looking for the zone file of a TLD that is not listed in CZDS, please contact the Registry Operator directly and ask for their Zone File Agreement. For reference, ICANN.org maintains a list of Registries.

* We recommend using **Chrome** browser for the best downloading zone file experience.

CHANNEL RESOURCES

Top-Level Domain Zone File Information

Request Access

ach of the .com and .net TLDs. The TLD Zone Files do not contain domain names in the t hold, pendingdelete, and redemptionperiod. In addition, the TLD Zone Files do not o not have name servers associated with them.

\$ORIGIN example.com. @ IN SOA

Zone Files

	IN	NS
	IN	NS
	IN	TXT
	IN	MX
	IN	A
*	IN	A
nsl	IN	A
ns2	IN	A
mail	IN	A
www	IN	А
www	IN	AAAA
www	IN	TXT
*.web	IN	A
ftp	IN	CNAM
;		
;		
;; RRs	added	for ena
;		
*	86400) IN
*.web	86400) IN
test	wsecd	lns 86
;		
*wsec	cdns_	IL
*wsec	cdnsn	nsl IN
*wsec	cdnsn	ns2 IN
*wsec	cdnsm	nail IN
*wsec	cdnsw	ww IN
*wsec	cdnsf	tp IN
;		
*test	cwse	cdns_
*test	cwse	ecdnsr
*test	cwse	ecdnsr
*test	:wse	cdnsi
*test	:wse	cdnsv

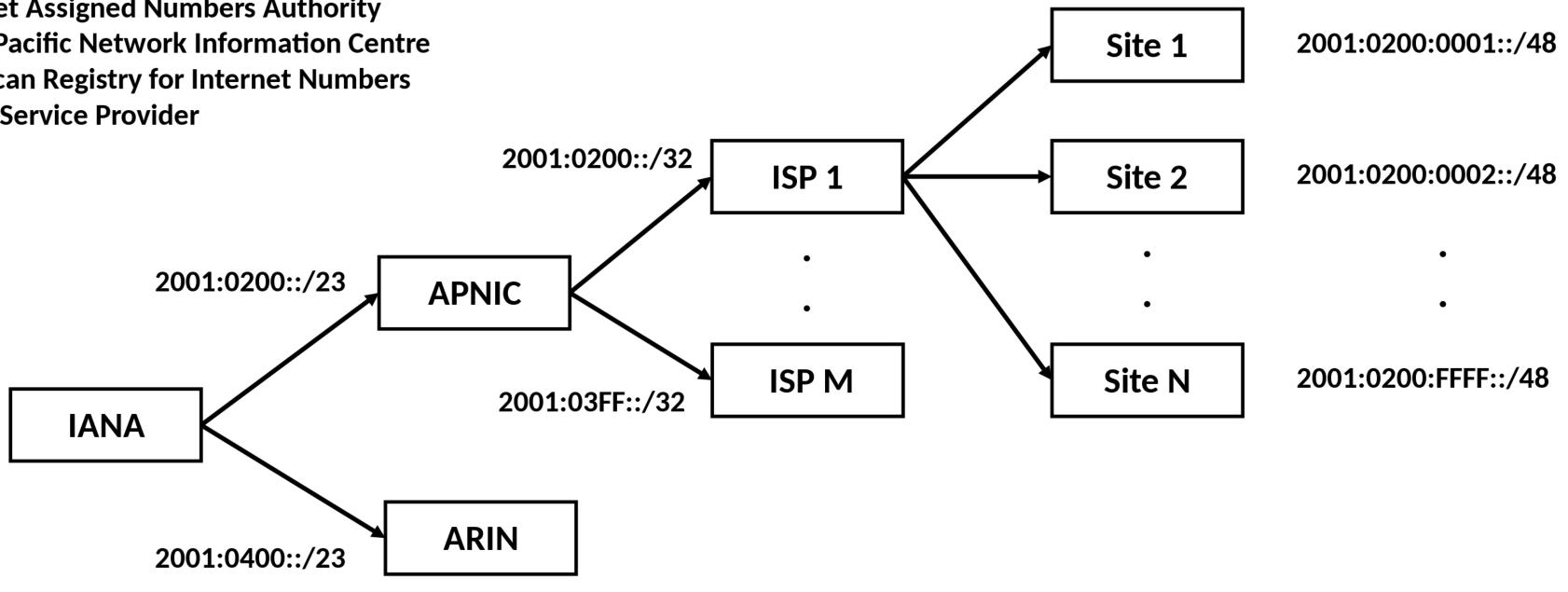
WSEC DNS: Protecting recursive DNS resolvers from poisoning attacks

```
ns1.example.com
                       hm.example.com. (
    2001062502 ; serial
    21600
               ; refresh after 6 hours
     3600
               ; retry after 1 hour
    604800
               ; expire after 1 week
               ; minimum TTL 10 minutes
    600)
    ns1.example.com.
    ns2.example.com.
     "v=spf1 a mx -all"
            mail.example.com.
    10
    10.0.1.1
    10.0.1.100
    10.0.1.2
    10.0.1.3
    10.0.1.4
    10.0.1.6
    2001:db8::3
А
    "This is our website"
    10.0.1.7
ME
    www
abling WSEC DNS are reported below
         "|wsecdns=enabled|" ; WSEC
  TXT
  TXT
         "|wsecdns=enabled|" ; WSEC
6400 IN
            TXT
                 "|wsecdns=enabled|" ; WSEC
   CNAME
            example.com. ; WSEC
N
   CNAME
            ns1 ; WSEC
N
   CNAME
            ns2 ; WSEC
N
   CNAME
            mail ; WSEC
Ν
   CNAME
            www ; WSEC
   CNAME
           ftp ; WSEC
Ν
    IN
         CNAME
                 _test_._wsecdns_ ; WSEC
    IN
         CNAME
                 _test_._wsecdns_ ; WSEC
ns1
         CNAME
ns2
    IN
                 _test_._wsecdns_ ; WSEC
                 _test_._wsecdns_ ; WSEC
ftp
    IN
         CNAME
    IN
         CNAME
                 _test_._wsecdns_ ; WSEC
www
```

Zone Files

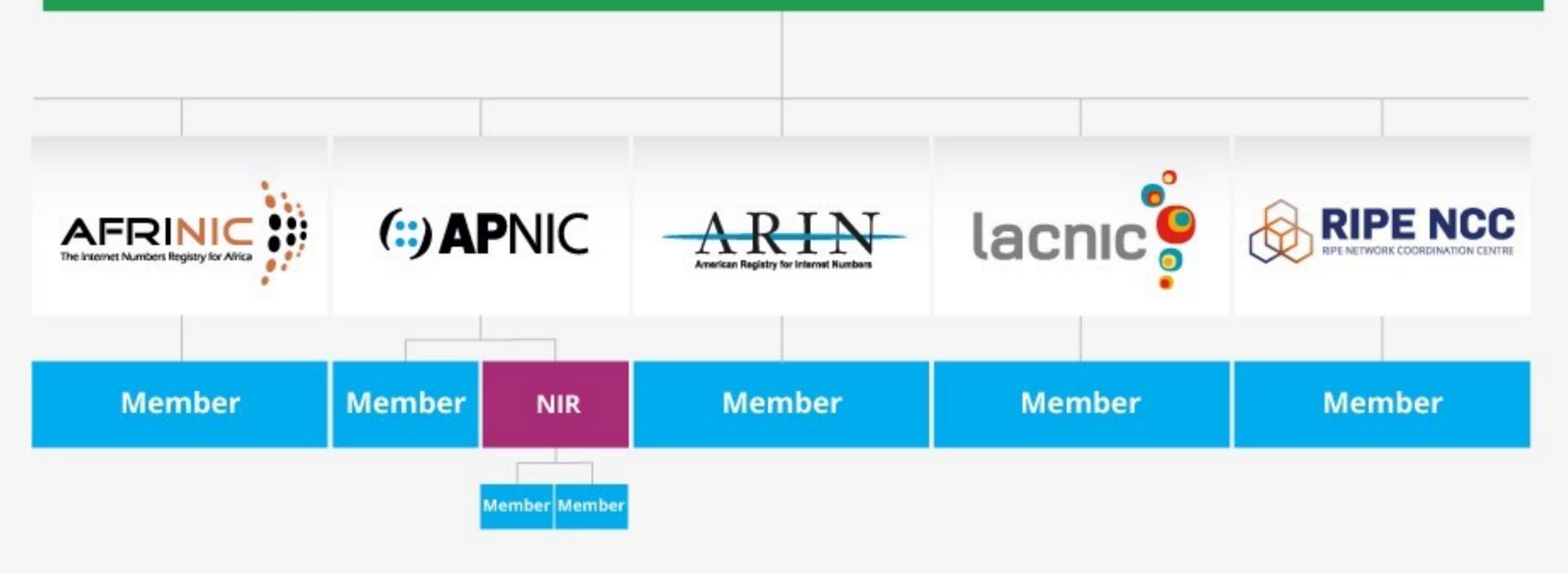
Zone Files for .com only provide NS records and associated glue records

- They don't know anything about subdomains! How do you find them?


cords and associated glue records bdomains! How do you find them?

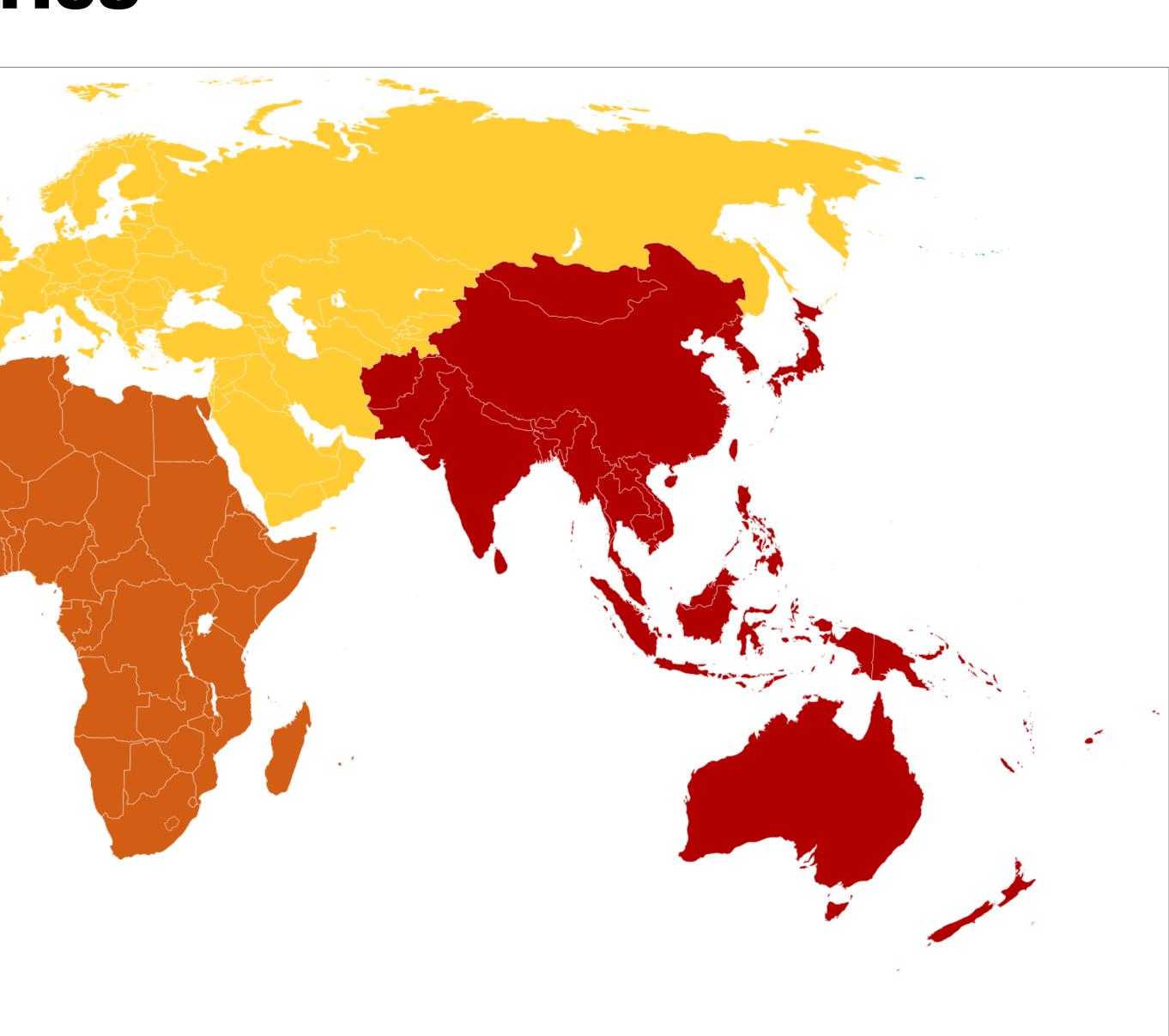
IP Address Allocation

IANA allocates blocks of IP addresses to regional Internet registries (RIRs).


IANA: Internet Assigned Numbers Authority APNIC: Asia-Pacific Network Information Centre ARIN: American Registry for Internet Numbers ISP: Internet Service Provider

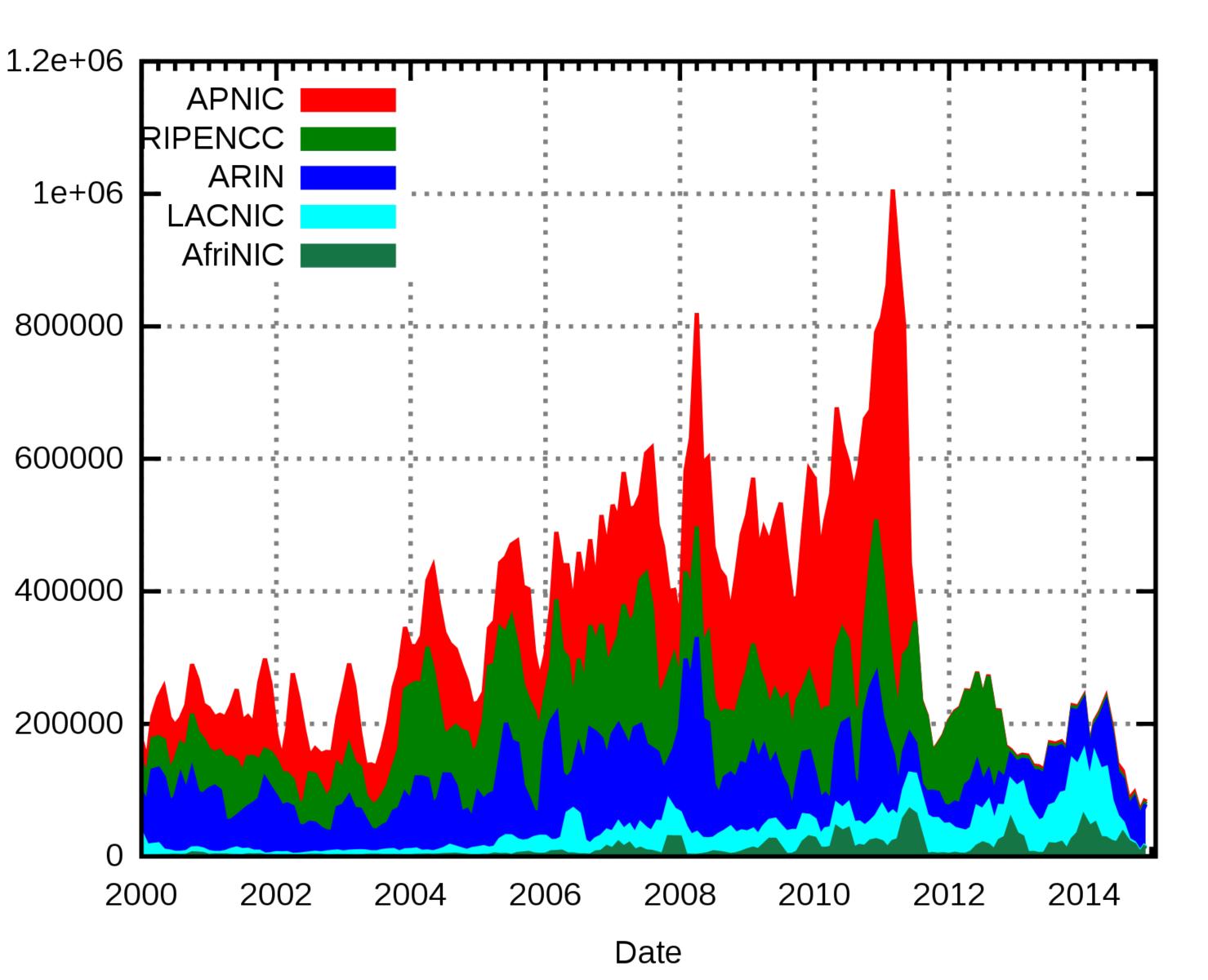
The 5 RIRs are informally liaised through an independent non-profit Number Resource Organization (NRO)

Regional Internet Registries


ANA Internet Assigned Numbers Authority

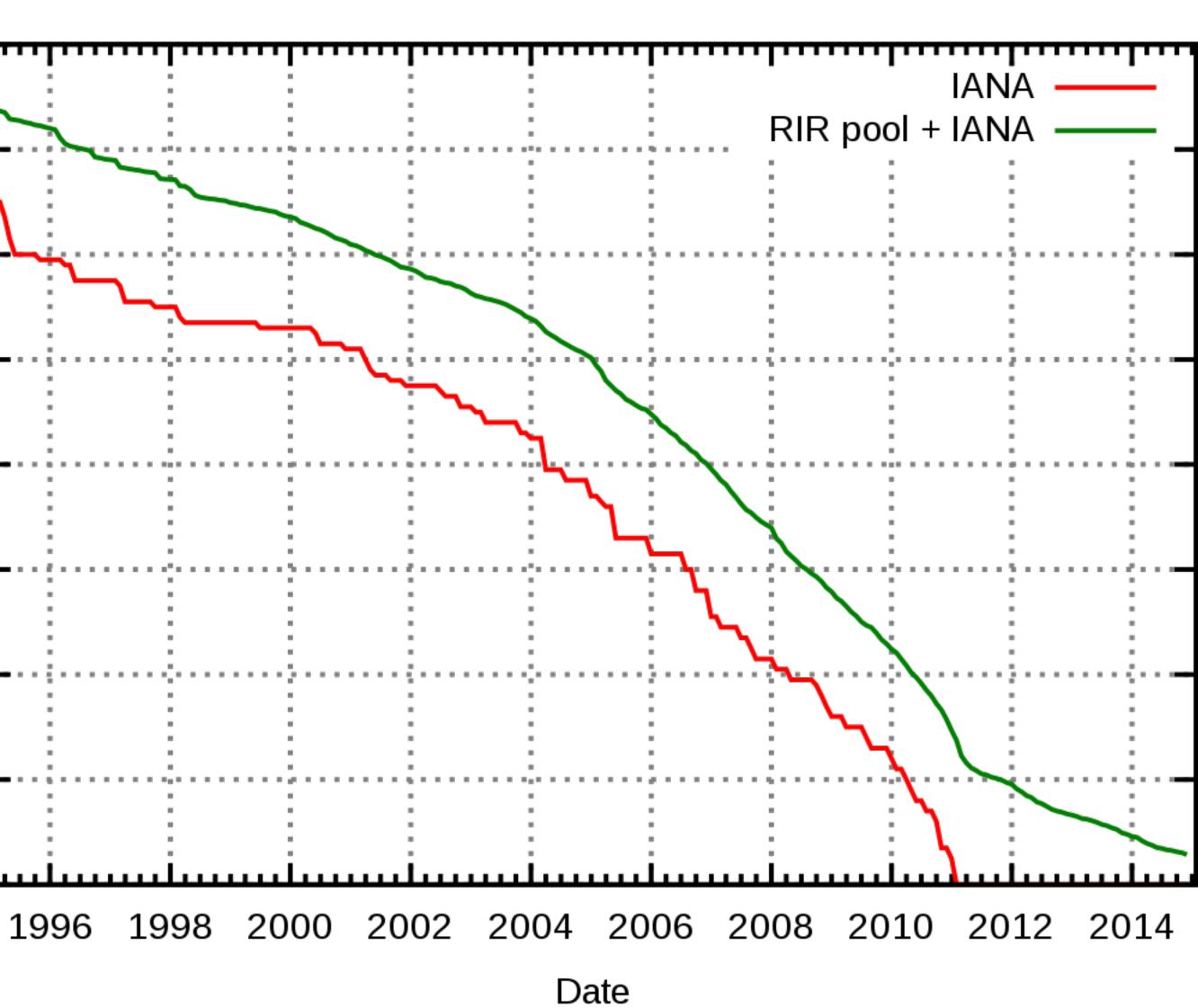
Regional Internet Registries

R


AFRINIC APNIC ARIN LACNIC RIPE NCC

RIR IPv4 Allocation Rates

RIRs were allocating IPs at tremendous rate especially in Asia


average assigned addresses per day

IPv4 Allocations

IANA ran out out unallocated IP blocks in January 2011

RIRs ran out soon after: APNIC – April 2011 8 LACNIC – June 2014 ARIN – Sept 2015 AFRINIC – April 2017 RIPE — Nov 2019

Reclaiming Unused IPv4 Address Space

Some organizations have returned unused address space

- Stanford returned 36.0.0.0/8 and kept only 5 x /16s by 2000
- MIT sold half of 18.0.0/8 to Amazon in 2017. Had only ever used 2 of the 16 million IPs they owned
- ? How much of IPv4 is advertised? You can check your routing table.

P Markets

IP Markets

It's permissible to transfer ownership (i.e., sell) IP blocks larger than a /24

Transfers are approved by RIRs (e.g., ARIN or RIPE) — ensures that destination organization has good reason for the number of IPs purchased

/24 Block registered	d in ARIN	/23 Block registere	d in RIPE	/23 Block registered	in RIPE	/22 Block registere	d in RIPE
Transferable to: ARIN LACNIC	I, APNIC, RIPE,	Transferable to: ARI	N, APNIC, RIPE,	Transferable to: ARIN LACNIC	I, APNIC, RIPE,	Transferable to: ARI LACNIC	N, APNIC
SALE PRICE \$14,080.00	\$/ADDRESS \$55.00	SALE PRICE \$28,160.00	\$/ADDRESS \$55.00	SALE PRICE \$28,160.00	\$/ADDRESS \$55.00	SALE PRICE \$56,320.00	\$
ENDS IN		ENDS IN		ENDS IN		ENDS IN	
17h 17m 40s		17h 26m 8s		17h 26m 34s		17h 34m 39s	
BUY NOW /21 Block registered	t in RIPE	BUY NOW	d in RIPE	BUY NOW	in RIPE	BUY NOW	d in ARII
/ 21 Block registered Transferable to: ARIN		BUY NOW /22 Block registere Transferable to: ARI LACNIC		BUY NOW /21 Block registered Transferable to: ARIN LACNIC		BUY NOW /24 Block registere Transferable to: ARI LACNIC	
BUY NOW /21 Block registered Transferable to: ARIN LACNIC SALE PRICE		/ 22 Block registere Transferable to: ARI		/ 21 Block registered Transferable to: ARIN		/ 24 Block registere Transferable to: ARI	
/ 21 Block registered Transferable to: ARIN LACNIC	N, APNIC, RIPE,	/ 22 Block registere Transferable to: ARI LACNIC	N, APNIC, RIPE,	/ 21 Block registered Transferable to: ARIN LACNIC	I, APNIC, RIPE,	/ 24 Block registere Transferable to: ARI LACNIC	N, APNIC
/ 21 Block registered Transferable to: ARIN LACNIC SALE PRICE	N, APNIC, RIPE, \$/ADDRESS	/22 Block registere Transferable to: ARI LACNIC SALE PRICE	N, APNIC, RIPE, \$/ADDRESS	/21 Block registered Transferable to: ARIN LACNIC SALE PRICE	N, APNIC, RIPE, \$/ADDRESS	/24 Block registere Transferable to: ARI LACNIC SALE PRICE	N, APNIC

https://auctions.ipv4.global/

ipv4marketgroup.com

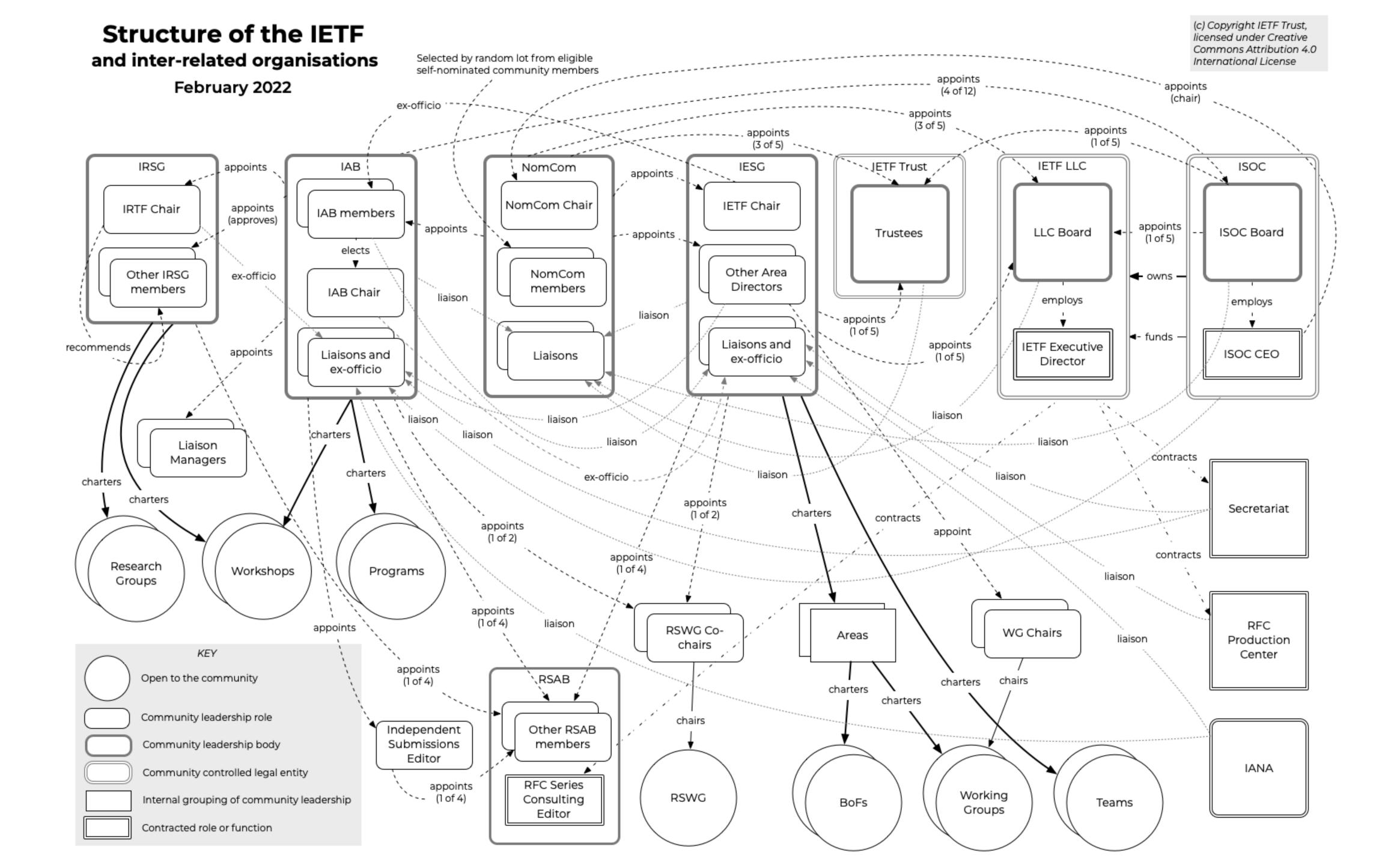
IETF: Internet Engineering Task Force

IETF is a standards organization that is responsible for the technical standards that make up the Internet protocol suite

Publish RFCs — Request for Comment — that document individual protocols

There is no membership: Anyone can participate by joining working group mailing list or attending an IETF meeting in person

Until a few years ago, IETF wasn't a real organization — was managed by Internet Society (ISOC) — another non-profit (the one that owns .org)


<u>1</u>. Introduction

Almost every IETF participant knows the aphorism from Dave Clark's 1992 plenary presentation [<u>Clark</u>] regarding how we make decisions in the IETF:

We reject: kings, presidents and voting.

We believe in: rough consensus and running code.

That is, our credo is that we don't let a single individual dictate decisions (a king or president), nor should decisions be made by a vote, nor do we want decisions to be made in a vacuum without practical experience. Instead, we strive to make our decisions by the consent of all participants, though allowing for some dissent (rough consensus), and to have the actual products of engineering (running code) trump theoretical designs.

