CS249i: The Modern Internet Stanford Computer Science

CAIDA'S IPV4 AS CORE GRAPH JANUARY 2020

Copyright UC Regents 2020 | https://www.caida.org/projects/cartography/as-core/pics/2020/ascore-2020-ipv4-standalone.png

Companies who want Internet access pay IP Transit providers, who in turn pay larger providers

If your Transit Provider didn't pay a larger Transit Provider, then you'd only be able to send traffic to their other customers

Settlement Free Peering

Even if you have IP Transit, two companies may want to exchange traffic without incurring any transit fees — known as "Settlement Free Peering"

Generally the two parties are equals in some way — they are "peers"

Example: Berkeley and Stanford don't want to both pay their ISPs to transit their traffic when they could just peer with one another.

Peering is not Transitive

In this situation, Berkeley and Stanford don't want to be each other's Internet Service Provider — Stanford will only advertise its own IP ranges to Berkeley

Not a substitute for Internet Transit — the peering is only a shortcut for Stanford \leftrightarrow Berkeley's traffic to one another

mernet ranst (Connecting to the Edge)

Choosing an IP Transit Provider

- Except for residential access, Internet Transit is a metered service. Different providers have different costs, different assurances
- If you're small, you're probably choosing from a limited number of *regional providers* it's expensive to lease fiber to connect to someone far away from you
- Not necessarily a direct correlation between price and quality. ISPs have different reputations. Knowledge is shared through industry groups like NANOG (North American Network Operators' Group)

Pre-Commit + Burst Rate + Port Size

Generally, you negotiate two costs:

use less than the committed amount (at a discounted rate)

Typically more expensive than or tied to flat rate.

For example, you could commit to 3 Gbit on a 10 Gbit port.

As part of this negotiation, you also define an SLA (Service Level Agreement). This quantifies acceptable downtime, max packet drop rate, transit times within the ISP.

"SLAs are widely dismissed by operators as merely insurance policies" — William Norton (Co-Founder of Equinix)

- **Commit ("Flat Rate")** how much you pay each month regardless of whether you
- **Burst Rate** how much you pay per megabit between commit and 95th percentile.

95th Percentile Pricing (aka 95/5 pricing)

Calculate usage every 5 minutes (max of inbound and outbound). Line up from lowest to highest. Charge based on 95th percentile.

Allows small bursts without affecting overall costs. Big bursts of traffic throw off averages — demonstrated problem in late 90s early 2000s

Bandwidth can be used at a higher rate for up to 72 min/day with no penalty.

Example IP Transit Order

Account Number:		Account Name:
Location(s):	See Special Instructions	
Port:	 ☐ Fast Ethernet ☐ Gigabit Ethernet 	
	VLAN sub-interface requirements should be detailed in the Sp	
Bandwidth:	IP Fixed IP Burstable	Price Per Mbit - Committed: Price Per Mbit - Burst:
		USID: (Existing Service Only)
Circuit or	Customer Provided Circuit or Cross-Connect	
Cross-	NTT Provided Circuit or Cross-Connect	
Connect:	Telco Quote #: Q113588.1	

nGigabit Ethernet ne Hundred Gigabit Ethernet		
ecial Instructions	MRC	NRC
Committed Bandwidth: 3000 Mbps		
Maximum Bandwidth: 10000 Mbps		
Cumulative Billing (Specify detail in Special Instructions)		
	\$ 0.00	\$ 0.00

Real World Pricing

Lst prices are inflated and negotiable (as v any enterprise product). I've seen 30-50% advertised. Get multiple quotes.

Prices typically are negotiated under NDA and cannot be publicly shared

Prices are consistently falling — do not sign long contracts — Price != Quality

This year I've signed contracts between \approx \$0.20 - \$0.50 / Mbit for IP commit

Λ	vith	
)	off	of

Year	Internet Transit Prices (in Mbps, min commit)		% Declin
1998	\$1200	per Mbps	
1999	\$800	per Mbps	33%
2000	\$675	per Mbps	16%
2001	\$400	per Mbps	40%
2002	\$200	per Mbps	50%
2003	\$120	per Mbps	40%
2004	\$90	per Mbps	25%
2005	\$75	per Mbps	17%
2006	\$50	per Mbps	33%
2007	\$25	per Mbps	50%
2008	\$12	per Mbps	52%
2009	\$9.00	per Mbps	25%
2010	\$5.00	per Mbps	44%
2011	\$3.25	per Mbps	35%
2012	\$2.34	per Mbps	28%
2013	\$1.57	per Mbps	33%
2014	\$0.94	per Mbps	40%
2015	\$0.63	per Mbps	33%
Source: DrPeering.net			

Hurricane Electric Advertised Special (Insanely Cheap)

Specials

Get BGP+IPv6+IPv4 for \$0.09/Mbps!

Basic Internet Access

Do you need to BGP peer with anyone for Internet access?

Why No?

- Tremendous room for error in BGP configuration
- Minimum size of routed prefix is /24 = 256 addresses
- Router needs sufficient memory to store Internet routing table (\$\$)
 - Can sometimes ask for your ISP to provide only default route (0/0)

Why Yes?

- You want to advertise an AS to multiple upstream providers
- You want to control your own AS and IP blocks

If you're not a large organization, you're likely not going to <u>BGP peer</u> with your ISP

Peering Policies

ISPs generally fall within one of three peering policy categories:

- **Open:** ISP will peer with almost everyone
- Selective: ISP has specific criteria for peers
- **Restrictive:** ISP generally does not want to peer with you

Individual Peering Policies can differ dramatically

- Most ISPs are relatively selective (typically, larger = more selective)
- Hurricane Electric will peer with anyone
 - Having the largest number of peers is a marketing win for them
- Content Providers (e.g., Google) have relatively open peering policies
 - They'd prefer not to pay ISPs for traffic

Convergence

Can you access the full Internet through only settlement-only peering (without buying any IP Transit)?

If you peered with enough networks and ISPs, you theoretically might not need to buy IP Transit, but...

- It's difficult to peer with a tremendous number (tens or hundreds of thousands) of networks. How will you connect to all of them?
- Large networks won't peer with smaller players (little value for them, big value for you)
- to peer with every other Tier-2, the wouldn't have everything

- Large ("Tier-1") networks have direct customers, so even if a Tier-2 were

Tier-1 Network Definition

Tier-1 Provider: a network that can access every network on the Internet through settlementfree peering

Tier-1 Networks are so well connected that nobody would charge them for connectivity

Exclusive Club — Tier 1s have little incentive to support new Tier 1 networks

AT&T ^[11]
Deutsche Telekor
GTT Communica
Liberty Global ^[17]
Lumen Technolog
Lumen Technolog
NTT Communica
Orange ^[27]
PCCW Global
T-Mobile US (form
Tata Communica
Telecom Italia Sp
Telia Carrier ^[34]
Telxius (Subsidia
Verizon Enterpris
Zayo Group (form

Name \$	Headquarters +	AS nu
	United States	7018
m Global Carrier ^[13]	Germany	3320
tions	United States	3257
[18]	United Kingdom ^[19]	6830
gies (formerly CenturyLink formerly Level 3) ^{[21][22][23]}	United States	3356
gies (formerly CenturyLink formerly Level 3 formerly Global Crossing) ^{[21][22][23]}	United States	3549
tions (formerly Verio) ^[26]	Japan	2914
	France	5511
	Hong Kong	3491
nerly Sprint) ^[29]	United States	1239
tions (formerly Teleglobe) ^[31]	India	6453
arkle (Seabone) ^[33]	Italy	6762
	Sweden	1299
ry of Telefónica) ^[36]	Spain	12956
e Solutions (formerly UUNET) ^[42]	United States	701
nerly AboveNet) ^[44]	United States	6461

mber	¢

Telia Carrier (Tier 1)'s Peering Policies

Telia will consider peering with you if...

- Peer must be able to exchange traffic in EMEA, AMER, and APAC
- Peer must be able to connect to Telia's backbone network in...
 - At least 40 cities in separate metropolitan areas in Europe,
 - At least 35 cities in separate metropolitan areas in North America,
 - At least 3 cities in separate metropolitan areas in Asia Pacific/Oceania
- Peer must be willing to implement a minimum of 18 points of interconnection
 - Each interconnect must be capable of supporting 100 Gbps of Traffic
- Traffic exchanged shall be balanced (inbound:outbound cannot exceed 3:1)
- Peer must have at least 1,500 distinct BGP customers

Interconnection Relationship Review

Peering:

- Typically settlement free between two "peers"
- Non-transitive only gain access to that ISP's customers
- Unless you peer with an unattainable number of ISPs, you're not going to gain access to the full Internet routing table — not possible in practice

IP Transit:

- Pay a larger Transit Provider for access to their full routing table
- Your "default" route any traffic not to a peer goes to Transit Provider

Most ISPs (unless you're a Tier-1) will have both peers and transit providers

Physical **MERCENNER**

Direct Circuit Peering

Historically, ISPs would directly connect their networks with fiber — known as **Direct-Circuit Peering**

- Typically the two peering ISPs would ask a local provider to provide fiber between two POPs (points of presence) within a local metropolitan area
- Expensive and slow (circuits could easily be delayed by months or years)

Sometimes still happens, but only if a small number of connections and a single metropolitan area

- For example, if you just need IP Transit from your regional ISP

Carrier Hotels + Private Peerings

ISPs eventually agreed on specific buildings where ISPs, cloud providers, CDNs, and companies could peer with one another — known as carrier hotels

Originally, many locations were at the landing points of undersea cables. Locations have since increased

Typically owned by a third-party rather than a carrier

Carrier Hotels support **Private Peerings** – two ISPs directly connect their racks together (known as a "cross connect" or "XC")

Downside: You might have to have physical fiber connects with dozens of other people in the same data center. Router ports are expensive!

60 Hudson Street, New York City

Internet Exchange Points (IXPs) + Public Peering

Carrier Hotels provide shared interconnect (switching fabric) between ISPs

Allow ISPs to BGP peer with a large number of organizations through a single link

Peerings that use shared fabric ("public interconnect") known as a "Public Peering"

You still have to negotiate the BGP peering with others on the exchange

In the U.S., private peering more common. In Europe, public peering more common.

Many ISPs Will be Your Friend at an IXP

Most content providers will peer with you over public exchanges

So will cloud providers

Little downside for them not to if they're already on the exchange

Most ISPs (even Tier 1s) will sell you transit at an IXP (via private peering)

Multilateral Peering Exchanges

Typically, you'd establish peering relationships with others at an exchange

This can become cumbersome if there are a large number of players (could be 100s or 1000s at a single IXP)

Route server allows those with open policies to all BGP peer with only a single entity to both advertise its routes and collect routes from others on the exchange

Known as Multilaterial Peering

Packet Clearing House — Where are U.S. IXPs?

Packet Clearing House — Asia

1111 IXPs shown - Number of IXPs by Country

Tokyo, Japan

13 IXPs

Download

JPNAP Tokyo Japan Internet Exchange Network Service Provider IXP (Distributed IX in Edo) BBIX Tokyo Network Service Provider IXP-6 Equinix IBX Tokyo JPIX Nihonbashi Media Exchange Co. Network Service Provider IXP Pihana Tokyo JPNAP Tokyo II - Ikebukuro Asia Smart IX [BBIX Asia] Tokyo Lambda Exchange Source: pch.net

Equinix — Largest Commercial IXP Provider

Equinix Internet Exchange San Jose (Bay Area)

Facilities:

- Equinix SV1/SV5/SV10 San Jose
- Equinix SV2 Santa Clara
- Equinix SV3 San Jose
- Equinix SV4 Sunnyvale
- Equinix SV8 Palo Alto

~210 (publicly listed) participants on San Jose Exchange. ~101 on Palo Alto Exchange.

~500 organizations listed between those 5 hotels (many more than on public exchange)

European Example: AMS-IX

AMS-IX Points of Presence

	Data Centre	Phone	Address
1	NorthC Amsterdam (AMS01)	+31 (0)20 486 9773	Kabelweg 48a, Amsterdam
2	Digital Realty AMS17	-	Science Park 120, Amsterdam
3	Digital Realty AMS04	+31 (0)20 480 4415	H.J.E. Wenckebachweg 127, Amsterdam
4	Equinix AM1/2	+31 (0)53 434 0570	Luttenbergweg 4, Amsterdam
5	Equinix AM3	+31 (0)20 808 0015	Science Park 610, Amsterdam
6	Equinix AM5	+31 (0)20 592 8263	Schepenbergweg 42, Amsterdam
7	Equinix AM6	+31 (0)53 436 2666	Duivendrechtsekade 80A, Amsterdam
8	Equinix AM7	+31 (0)53 434 0570	Kuiperbergweg 13, Amsterdam
9	EuNetworks	+31 (0)20 354 8098	Paul van Vlissingenstraat 16, Amsterdam
10	Iron Mountain	+31 (0)20 316 5170	J.W. Lucasweg 35, Haarlem
11	Global Switch	+31 (0)20 666 6300	Henk Sneevlietweg 2-6, Amsterdam
12	Interxion	+31 (0)20 880 7700	Tupolevlaan 101, Schiphol-Rijk
13	Interxion	+31 (0)20 560 6600	Science Park 121, Amsterdam
14	Nikhef	+31 (0)20 592 2037	Science Park 105, Amsterdam

Members	882[1]
Ports	1,438 [1]
Peers	1,316 [1]
Peak in	9.022 Tb/s ^[2]
Peak out	10.287 Tb/s ^[2]
Daily in (avg.)	6.42[8] Tb/s ^[2]
Daily out (avg.)	6.43[8] Tb/s ^[2]

PeeringDB is a free database of networks, IXPs, and facilities

https:/peeringdb.com/

AMS-IX Silver Sponsor

Organization	Amsterdam Internet Exchange BV
Also Known As	
Long Name	Amsterdam Internet Exchange
City	Amsterdam
Country	NL
Continental Region	Europe
Media Type	Ethernet
Service Level	Not Disclosed
Terms	Not Disclosed
Last Updated	2020-01-22T04:24:06Z
Notes 😯	

Contact Information

Company Website	http://www.ams-ix.net/
Traffic Stats Website	https://www.ams-ix.net/statistics/
Technical Email	noc@ams-ix.net
Technical Phone 🕄	+31205141717
Policy Email	info@ams-ix.net
Policy Phone 🕄	+31203058999

LAN

MTU	1500
IX-F Member Export URL Visibility	Private

Search here for a network, IX, or facility.

Advanced Search

Peers at this Exchange Point		Filter	
Peer Name J ^r ASN	IPv4 IPv6		Speed Policy
58073	2001:7f8:1::a505:807	73:2	Open
<u>Zain Group - Wholesale</u> 59605	80.249.210.78 2001:7f8:1::a505:960)5:1	100G Open
Zajil International Telecom Company K.S.C.C 6412	80.249.210.129 2001:7f8:1::a500:647	12:1	10G Open
Zajil International Telecom Company K.S.C.C 6412	80.249.211.254 2001:7f8:1::a500:647	12:2	10G Open
<u>Zayo (Abovenet</u> <u>Communications Inc.)</u> 6461	80.249.208.122 2001:7f8:1::a500:646	61:1	100G Restrictive
Zayo France	80.249.209.53		10G
8218	2001:7f8:1::a500:827	18:2	Selective
Zenlayer Inc	80.249.210.34		100G
21859	2001:7f8:1::a502:188	59:1	Selective
<u>Zeta Global Corp.</u> 54312	80.249.210.75		10G Selective
Zoom Video Communications, Inc. 30103	80.249.209.11 2001:7f8:1::a503:103	3:1	10G Restrictive
Zscaler, Inc. AS62044	80.249.212.162		100G
62044			Open
Zscaler, Inc. AS62044	80.249.212.163		100G
62044			Open
Zummer	80.249.212.100		Open
51028	2001:7f8:1::a505:102	28:1	

Register or

Ter 1 Network Backborne

AT&T

gtt

Lumen

The 8 U.S. Interconnection Regions

Seattle

San Francisco (Bay Area)

Los Angeles

000

ឋ

00

Dallas

What happens if Tier-1s De-Peer?

"Cogent has decided not to exchange traffic directly with TeliaSonera's AS 1299 or indirectly with AS 1299 through a third-party provider," Telia told its customers. "As a result, Cogent has partitioned the Internet and disrupted the flow of traffic between Cogent and TeliaSonera customers."

Source: Anatomy of the Internet Peering Disputes

The Internet is Flat: Modeling the Transition from a Transit Hierarchy to a Peering Mesh

Three Changes in the World:

- An increasing fraction of Internet traffic originates from a few CPs or CDNs (e.g., Google, YouTube, Akamai, Cloudflare). This shift is due to the large penetration of video streaming.
- The major CDNs and CPs have expanded to almost every region of the developed world, so that they can be co-located with many ASes at Internet Exchange Points (IXPs).
- IXPs have increased rapidly in number, making it easy and cheap for an AS to establish peering links with other ASes co-located at the same IXP.

Tier 1 Peerings Mattered Less

How Comcast became a toll-collecting, nuke-wielding hydra

Comcast wants cash to deliver cached Netflix traffic to its subscribers. Has ...

NATE ANDERSON - 11/30/2010, 1:35 PM

Down: Up > 5:1

Settlement Free Peering

Level 3

Netflix

Commercial Agreement (L3 is Both ISP and CDN)

A Small Transit Provider Case Study

AS19653 – Small Transit Provider in Climax, Michigan Founded in 1911 as an Independent Telephone Company. Started as a CLEC in 1996. Independent ILEC-CLEC-ISP. CLLI = CLMXMIXI

2011 – Joined NANOG

Telephone Company (ILEC-CLEC) Tier 3 ISP 100% transit (two OC-12s)

A Small Transit Provider Case Study

2017 – (after 18 NANOGs)

Packet Optical Service Provider Tier 2 ISP 88% Peering 12% transit More than 100G in upstream ports

AS19653 Evolution of Transit to Peering

A Small Transit Provider Case Study

AS19653 From Transit to IXP Peering to CDN

A Small Transit Provider Case Study

Percentage of Total Traffic AS19653 Transit/Peering/CDN

Transit

A Small Transit Provider Case Study

IX Peering CDN Peering

100% 90% 60% 30% 20% 10%