
Web Protocol Evolution
CS249i The Modern Internet

Evolution of the Web

• Earliest websites provided static
content with little additional media

• First Website, August 6, 1991:

Ostensibly the first website ever

Evolution of the Web

• Earliest websites provided static
content with little additional media

• Over time, websites grew to include
many more things, like deepening the
web structure (adding more pages),
adding images, logos, and even
started serving some dynamic content

ESPN in 1996

Evolution of the Web

• Earliest websites provided static
content with little additional media

• Over time, websites grew to include
many more things, like deepening the
web structure (adding more pages),
adding images, logos, and even
started serving some dynamic content

• Modern websites are incredibly
complex are rely on often hundreds of
resources to properly function

A History of Web Protocols
HT

TP
/0

.9

HT
TP

/3

HT
TP

/2

HT
TP

/1
.1

HT
TP

/1
.0

QU
IC

1991 1996 1997 2015 2021 2021

ST
UF

F

1997-2015

Interfacing with the Web
Client / Server Model

Client Web Server

Interfacing with the Web
Client / Server Model

Client Web Server

Request

Interfacing with the Web
Client / Server Model

Client Web Server

Request

Response

A History of Web Protocols
HT

TP
/0

.9

HT
TP

/3

HT
TP

/1
.1

HT
TP

/1
.0

1991 1996 1997 2015

ST
UF

F

1997-2012

HT
TP

/2
QU

IC

2021 2021

HTTP/0.9
Single Line Protocol

• In 1991, Tim-Berners Lee needed a simple protocol to test his new invention
“The Mesh” → “The World Wide Web”

• The first web browser was also called “WorldWideWeb”

• Request was a single line command, supported only retrieving HTML content

• GET /index.html

• Response was the file data itself!

• HTTP/0.9 was built on top of TCP, for reliable transport of data, and the
connection was closed after every single request

The Web Catches On
Moar Content

• The web started catching on, and people
started to build out software that could
interact with other types of content (e.g.,
images) and share other meta-data

• HTML specification started to show a lot
of progress

• The first browsers started showing up
around 1994 – Netscape (first browser)
was developed as an academic project
at NSCA in Champaign, IL

• Began the first “browser wars”

A History of Web Protocols
HT

TP
/0

.9

HT
TP

/3

HT
TP

/2

HT
TP

/1
.1

HT
TP

/1
.0

QU
IC

1991 1996 1997 2015 2021 2021

ST
UF

F

1997-2015

HTTP/1.0
Specification Improvements

• Goals: “generic, stateless, object-
oriented protocol which can be used
for many tasks, such as name servers
and distributed object management
systems” (from RFC1945)

• Added versioning, a number of new
methods (POST, HEAD, PUT, DELETE,
LINK, UNLINK), supported myriad
different content-types (no longer just
HTML!), and included headers to
accompany each request and
response

HTTP/1.0 200 OK
Date: Fri, 08 Aug 2003 08:12:31 GMT
Server: Apache/1.3.27 (Unix)
MIME-version: 1.0
Last-Modified: Fri, 01 Aug 2003 12:45:26 GMT
Content-Type: text/html
Content-Length: 2345

<HTML> ...

HTTP/1.0
Mired with Problems

• Connections were closed after
requesting a single resource = Slow

• Internet connection speeds were
slow, and TCP slow start had just
been rolled out widely

• People wanted to host multiple
websites at the same IP address,
which wasn’t possible

A History of Web Protocols
HT

TP
/0

.9

HT
TP

/3

HT
TP

/2

HT
TP

/1
.1

HT
TP

/1
.0

QU
IC

1991 1996 1997 2015 2021 2021

ST
UF

F

1997-2015

HTTP/1.1
A New Era

• HTTP/1.1 fixed many problems and challenges with early versions

• Added the Host header (to enable multiple websites with different domains
to be served from the same IP address)

• Allowed for persistent connections

• Allowed chunked responses

• Enabled pipelining of requests

HTTP/1.1
Persistent Connections

Client Web Server

HTTP/1.1
Persistent Connections

Client Web Server

SYN

HTTP/1.1
Persistent Connections

Client Web Server

SYN
SYN+ACK

HTTP/1.1
Persistent Connections

Client Web Server

SYN
SYN+ACK

ACK

HTTP/1.1
Persistent Connections

Client Web Server

TCP Connection

HTTP/1.1
Persistent Connections

Client Web Server

Request

GET /index.html HTTP/1.1

GET /index.html HTTP/1.1
Host: kumarde.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.9; rv:50.0)
Gecko/20100101 Firefox/50.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate, br
Referer: https://developer.mozilla.org/testpage.html
Connection: keep-alive

HTTP/1.1
Persistent Connections

Client Web Server

Response

index.html

200 OK
Access-Control-Allow-Origin: *
Connection: Keep-Alive
Content-Encoding: gzip
Content-Type: text/html; charset=utf-8
Date: Mon, 18 Jul 2016 16:06:00 GMT
Keep-Alive: timeout=5, max=997
Last-Modified: Mon, 18 Jul 2016 02:36:04 GMT
Server: Apache
Transfer-Encoding: chunked

HTTP/1.1
Persistent Connections

Client Web Server

Response

index.html

200 OK
Access-Control-Allow-Origin: *
Connection: Keep-Alive
Content-Encoding: gzip
Content-Type: text/html; charset=utf-8
Date: Mon, 18 Jul 2016 16:06:00 GMT
Keep-Alive: timeout=5, max=997
Last-Modified: Mon, 18 Jul 2016 02:36:04 GMT
Server: Apache
Transfer-Encoding: chunked

index.css

zakir.jpg

main.js

HTTP/1.1
Persistent Connections

Client Web Server

Request

GET /index.css HTTP/1.1
zakir.jpg

main.js

HTTP/1.1
Chunking

• With persistent connections, servers could also now chunk data by sending a
Transfer-Encoding: Chunked header

• Essentially, this means that servers can break up their responses into
independent chunks – each chunk does not need to know about the other
chunks in order to send correctly

• This enabled the transfer of large files via HTTP, and also enabled streaming
data (e.g., video content streaming, which is typically TCP based)

HTTP/1.1
Pipelining

• Another great feature for HTTP innovation was pipelining, essentially the ability
for clients to make additional requests before the response to previous
requests arrived

• Requirement: Servers needed to send back responses in the order they were
received

• HTTP/1.1 specification dictated that servers MUST implement pipelining

• On the server side, this simply amount to keeping network buffers open and
know to look for more HTTP requests on the TCP connection before response

• Clients did not want to deal with HTTP pipelining… why?

HTTP/1.1
Pipelining

Client Web Server

index.css

zakir.jpg

main.js

TCP Connection

HTTP/1.1
Pipelining

Client Web Server

index.css

zakir.jpg

main.js

index.css

main.js

zakir.jpg

With pipelining, I can use just one TCP connection!

HTTP/1.1
Pipelining

Client Web Server

index.css

zakir.jpg

main.js

index.css

main.js

zakir.jpg

But what happens if index.css takes a long time to retrieve?

HTTP/1.1
Pipelining

Client Web Server

index.css

zakir.jpg

main.js

Also, what about HTTP proxies?

index.css

HTTP/1.1
Head of Line Blocking

• Big problem with HTTP/1.1 pipelining is a concept called head of line
blocking (HOL) which essentially means that subsequent resources on a
shared connection need to wait for the first request to be serviced before
they can be served

• In theory, pipelining is a good idea, but there are some thorny edge cases

• If proxies do not support pipelining, clients need to retransmit or fall-back
to non-pipelining, which is hard to identify and causes delays

• This crippled HTTP/1.1 pipelining, so much so that no browsers currently
support it and browser developers get angry when you bring it up

HTTP/1.1
Head of Line Blocking

https://bugzilla.mozilla.org/show_bug.cgi?id=264354

HTTP/1.1
Persistent Connections

Client Web Server

index.css

main.js

zakir.jpg

HTTP/1.1
Persistent Connections

Client Web Server

index.css

main.js

Modern browsers will open up to 6 TCP connections per host, plus 4 external TCP connections at a time

zakir.jpg

other-resource-1.png

other-resource-2.json

other-resource-3.jpg

HTTP/1.1
Head of Line Blocking

• Head of Line blocking is broader
than pipelining

• Modern browsers still only open a
maximum of 6 connections and have
to wait for requests to finish before
issuing new ones

• This is still pretty slow

https://www.merkleinc.com/blog/http2-electric-boogaloo-0

A History of Web Protocols
HT

TP
/0

.9

HT
TP

/3

HT
TP

/2

HT
TP

/1
.1

HT
TP

/1
.0

QU
IC

1991 1996 1997 2015 2021 2021

ST
UF

F

1997-2015

ST
UF

F

What Happened from 1997 – 2012?

• Modern websites exploded with dynamic content and an increased reliance
on web resources to provide new online experiences

• In 2011, median number of requests per modern webpage was 40, with
some requesting up to 100 different different objects

• Internet speeds and infrastructure significantly improved, networks matured

• Millions of people were accessing the Internet (and the web) for the first
time, adding significantly to load

• We needed to figure out how to meet the demands of a growing web, and
HTTP/1.1 was not cutting it.

SPDY: Google’s solution

• Google engineers decided to try and modernize how web content was shared, and
developed SPDY (pronounced “speedy”), which was largely motivated by reducing
page load times for websites

• SPDY was a translation layer between HTTP clients and servers and sat in front of
HTTP on both ends

• Shipped in Chrome, Firefox also implemented SPDY shortly after

• At its peak, SPDY served the majority of traffic to Google services and a whole host
of other Internet services

• SPDY formed the foundation for what would eventually be HTTP/2, SPDY is now
deprecated

A History of Web Protocols
HT

TP
/0

.9

HT
TP

/3

HT
TP

/2

HT
TP

/1
.1

HT
TP

/1
.0

QU
IC

1991 1996 1997 2015 2021 2021

ST
UF

F

1997-2015

ST
UF

F

HTTP/2
Design Goals

1. Eliminate Head-of-Line (HOL) blocking by multiplexing HTTP
requests over a single TCP connection

2. Give servers more agency (e.g., allow them to push content
over persistent connections)

3. Reduce unnecessary duplicate bytes sent over the wire (e.g.,
static headers)

HTTP/2
Goal 1: Multiplexing Requests

• Core idea: Move away from an ASCII-based
request / response cycle for data transfer, and
move towards a binary stream of data

• Not backwards compatible with HTTP/1.x

• New terminology

• Streams: A bidirectional flow of bytes which can
carry one or more messages, denoted by an
integer stream_id

• Message: Complete sequence of frames that
map to a logical request or response

• Frame: Smallest unit of data, can contain either
header information or content information

https://developers.google.com/web/fundamentals/performance/http2

HTTP/2
Goal 1: Multiplexing Requests

• HTTP/2 uses a single TCP connection
for any number of arbitrary HTTP
requests and responses

• Everything is logically separated by
stream_id (4 byte integer)

• This means that if the server takes
significant amounts of time for one
request (say, the first one), other
requests can still be completed while
we wait for that one!

https://developers.google.com/web/fundamentals/performance/http2

HTTP/2
Stream Prioritization

• Either the client or server can create a new
stream, but the ordering of streams may matter
to some applications

• HTTP/2 also support prioritization of streams,
which is a mechanism that allows the client to
ask for specific streams ahead of others

• Clients can build a stream prioritization tree,
which is essentially weights on a graph sent
to the server along with each stream request

• Asking the server: “If you can, please process
stream 8 before you process stream 12”, but
it’s not a guarantee

HTTP/2
Design Goals

1. Eliminate HoL blocking by multiplexing HTTP requests over a single
TCP connection

2. Give servers more agency (e.g., allow them to push content over
persistent connections)

3. Reduce unnecessary duplicate bytes sent over the wire (e.g., static
headers)

HTTP/2
Goal 2: Giving servers more agency

• HTTP/2 offers a new feature called Server Push, which enables the server to
send data to the client that it hasn’t even requested yet.

• Why might we want this?

HTTP/2
Goal 2: Giving servers more agency

• HTTP/2 offers a new feature called Server Push, which enables the server to
send data to the client that it hasn’t even requested yet.

• Why might we want this?

• Despite the fact that websites are highly dynamic, they still serve lots of static
content

• e.g., index.css, main.js

• The server knows the client will need these assets to load the page, so why
not just give it to them in advance?

HTTP/2
Goal 2: Giving servers more agency

• Server Push is implemented using a
PUSH_PROMISE frame on a new stream

• Essentially asking to reserve an HTTP/
2 stream for pushing additional data to
the client

• Clients can still, however, reject the push
by sending a RST_STREAM frame, which
means “I don’t want this resource.”

• Could be because the resource is in
the cache already, or client is too busy,
or whatever the application demands

HTTP/2
Design Goals

1. Eliminate HoL blocking by multiplexing HTTP requests over a single
TCP connection

2. Give servers more agency (e.g., allow them to push content over
persistent connections)

3. Reduce unnecessary duplicate bytes sent over the wire (e.g., static
headers)

HTTP/2
Goal 3: Remove duplicate information as much as possible

• In HTTP/1.x, headers are always sent as plain text, despite the fact that many
are static and unchanging

• We already compress application data (e.g., with Content-Encoding: gzip),
but we don’t do this for headers @ the protocol level

• HTTP/2 solves this with a new compression algorithm, HPACK, which has two
main ideas

• Compress header data (Huffman coding)

• Keep a shared compression table on the client + server that is dynamically
updated with new requests every on every request / response

HTTP/2
HPACK Compression Table

• HPACK encodes a static table with 61
entries for the most common HTTP
headers (and some other freebies, like
GET, POST) into every client and server

• You no longer have to send these
headers in cleartext, you can just send
the encoded value of the index instead

• After this, every subsequent request is
dynamically encoded and added to the
shared table, which reduces the amount
of data required to be sent over the wire
for subsequent requests

Index Header Name Header Value

1 :authority

2 :method GET

3 :method POST

…

28 content-length

38 host

61 www-authenticate

62 Host kumarde.com

http://kumarde.com

HTTP/2
Design Goals

1. Eliminate HoL blocking by multiplexing HTTP requests over a single
TCP connection

2. Give servers more agency (e.g., allow them to push content over
persistent connections)

3. Reduce unnecessary duplicate bytes sent over the wire (e.g., static
headers)

HTTP/2
Adoption is booming

HTTP/2
Does it work?

• Generally, HTTP/2 will show performance benefits over HTTP/1.1 for well-
resourced, high bandwidth channels

• Financial Times reported speedups of 25 – 50% in a direct comparison
between HTTP/1.x and HTTP/2

• But turns out this isn’t universally true…

HTTP/2
Does it work?

• “HTTP/2 Performance in Cellular Networks”, from Montana State + Akamai,
showed that in poor network conditions, HTTP/2 performed worse than
HTTP/1.1, especially for larger objects. Why?

HTTP/2
A New Problem

• HTTP/2 solves the HTTP-level HoL blocking problems associated with older
versions of HTTP… but introduces a new problem at a lower layer

HTTP/2

Client Web Server

TCP Connection

• HTTP/2 solves the HTTP-level HoL blocking problems associated with older
versions of HTTP… but introduces a new problem at a lower layer

A New Problem

HTTP/2

Client Web Server

TCP Connection

Stream 2
seq: 2

Stream 1
seq: 3

Stream 2
seq: 4

Stream 3
seq: 5

Stream 3
seq: 6

• HTTP/2 solves the HTTP-level HoL blocking problems associated with older
versions of HTTP… but introduces a new problem at a lower layer

A New Problem

HTTP/2

Client Web Server

TCP Connection

Stream 2
seq: 2

Stream 1
seq: 3

Stream 2
seq: 4

Stream 3
seq: 5

Stream 3
seq: 6

• HTTP/2 solves the HTTP-level HoL blocking problems associated with older
versions of HTTP… but introduces a new problem at a lower layer

A New Problem

X

HTTP/2 — Removing Server Push

A History of Web Protocols
HT

TP
/0

.9

HT
TP

/3

HT
TP

/2

HT
TP

/1
.1

HT
TP

/1
.0

QU
IC

1991 1996 1997 2015 2021 2021

ST
UF

F

1997-2015

ST
UF

F

QUIC
A New Way Forward

• A core problem with HTTP (of all versions) up to this point is a fundamental
limitation of reliable transport

• We want to have reliability guarantees, but the way this is implemented in
the layering model (e.g., in TCP) makes it such that applications don’t have
flexibility to define what reliability means!

• We could try to change TCP?

• But that requires updating every router in the world. Way too hard.

• QUIC idea: What if we re-envisioned what we needed from lower network
layers?

QUIC
A New Transport Layer

IP

TCP

TLS

HTTP/2

The current world

QUIC
A New Transport Layer

IP

TCP

TLS

HTTP/2

The current world

IP

UDP

QUIC

HTTP/3

A QUICer world

QUIC
A New Transport Layer

IP

TCP

TLS

HTTP/2

The current world

IP

UDP

QUIC

HTTP/3

A QUICer world

This is all user space!!!

QUIC
Design Goals

• A new, reliable transport layer

• Easily deployable and evolvable

• Make this something that exists in userspace and something that doesn’t require us
to update every router ever

• Security by default

• Build in encryption, integrity checks, and authentication into the transport layer itself

• Reduce unnecessary delays imposed by strict layering

• Handshake delays (e.g., TLS handshake), HoL blocking (HTTP, TCP)

QUIC
Establishing a Connection

• The first time a client wants to communicate with a
server, it send an inchoate client hello in cleartext,
which will initiate a REJ (reject) from the server

• The server will send back a number of details,
including a certificate chain (for server
authentication) and other server metadata

• The client will then use the server information
provided to send a complete client hello, and
immediately start sending encrypted data

• Client caches server details (based on origin), so for
any future connection, the client can simply use the
server data to send encrypted messages moving
forward. This is known as a 0-RTT protocol.

QUIC vs. TLS + HTTP

Warning! Application data sent during 0-RTT can be captured by an on-path attacker and then replayed multiple times to the same server.

QUIC
Maintaining the Stream Abstraction

• QUIC uses the idea of a stream (with a stream_id) as a baseline abstraction
for sending data between two endpoints, similar to HTTP/2

Client Web Server

UDP Connection

HTTP
Stream 2

HTTP
Stream 1

HTTP
Stream 2

HTTP
Stream 3

HTTP
Stream 3

QUIC
Maintaining the Stream Abstraction

• QUIC uses the idea of a stream (with a stream_id) as a baseline abstraction
for sending data between two endpoints, similar to HTTP/2

Client Web Server

UDP Connection

HTTP
Stream 2

HTTP
Stream 2

HTTP
Stream 3

HTTP
Stream 3

HTTP
Stream 1

Retransmit

No more HoL blocking!

QUIC
Encrypt as much as possible

HTTP w/ TLS + TCP HTTP w/ QUIC

Slide stolen from: https://www.youtube.com/watch?v=31J8PoLW9iM&t=9104s

TCP vs. QUIC
Recovering from Losses

• TCP uses sequence numbers + acknowledgement numbers to identify
whether or not a packet has been lost, and needs to be retransmitted

• Unfortunately, sequence numbers mean two things: reliability and the order
at which the bytes are supposed to be delivered to the receiver

• On top of this, TCP retransmissions use the same sequence number, so it
becomes very hard to know whether an ACK was sent for first transmission
or a retransmission

• TCP conflates transmission ordering AND delivery ordering in one number

TCP vs. QUIC
Recovering from Losses

• QUIC decouples transmission and delivery ordering through its use of streams

• Each packet contains a packet number, which is unique and monotonically
increasing, even on retransmission

• Clients will ACKNOWLEDGE packet numbers, and the server can identify if
an outstanding packet has not been acknowledged… you can find the
details at the link below

• Each frame in a stream contains a stream offset, which alerts the client of
how to properly reorder the packets on the delivery side

• Enables simpler loss detection than TCP
https://tools.ietf.org/id/draft-ietf-quic-recovery-27.html

QUIC
Connection Rebinding

• Because QUIC connections are over UDP, they can persist beyond traditional
network boundaries, like your home NAT

• No more resetting connection when your underlying network changes

• QUIC does this through the use of several unique variable length Connection
IDs to identify the connection, with a protocol in place to verify the connection
through a network change

• See RFC for notes on address spoofing + off-path packet attackers
(something they’ve considered!)

HTTP/3 is HTTP/2 over QUIC!

